Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat(RingTheory/Polynomial/HilbertPoly): the definition and key property of Polynomial.hilbertPoly p d for p : F[X] and d : ℕ, where F is a field. #19303

Closed
wants to merge 18 commits into from
Closed
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4387,6 +4387,7 @@ import Mathlib.RingTheory.Polynomial.Eisenstein.IsIntegral
import Mathlib.RingTheory.Polynomial.GaussLemma
import Mathlib.RingTheory.Polynomial.Hermite.Basic
import Mathlib.RingTheory.Polynomial.Hermite.Gaussian
import Mathlib.RingTheory.Polynomial.Hilbert
import Mathlib.RingTheory.Polynomial.IntegralNormalization
import Mathlib.RingTheory.Polynomial.IrreducibleRing
import Mathlib.RingTheory.Polynomial.Nilpotent
Expand Down
4 changes: 4 additions & 0 deletions Mathlib/Data/Nat/Factorial/BigOperators.lean
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,10 @@ theorem prod_factorial_dvd_factorial_sum : (∏ i ∈ s, (f i)!) ∣ (∑ i ∈
· rw [prod_cons, Finset.sum_cons]
exact (mul_dvd_mul_left _ ih).trans (Nat.factorial_mul_factorial_dvd_factorial_add _ _)

theorem ascFactorial_eq_prod_range (n : ℕ) : ∀ k, n.ascFactorial k = ∏ i ∈ range k, (n + i)
| 0 => rfl
| k + 1 => by rw [ascFactorial, prod_range_succ, mul_comm, ascFactorial_eq_prod_range n k]

theorem descFactorial_eq_prod_range (n : ℕ) : ∀ k, n.descFactorial k = ∏ i ∈ range k, (n - i)
| 0 => rfl
| k + 1 => by rw [descFactorial, prod_range_succ, mul_comm, descFactorial_eq_prod_range n k]
Expand Down
90 changes: 90 additions & 0 deletions Mathlib/RingTheory/Polynomial/Hilbert.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
/-
Copyright (c) 2024 Fangming Li. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Fangming Li, Jujian Zhang
-/
import Mathlib.Algebra.Polynomial.AlgebraMap
import Mathlib.Algebra.Polynomial.Div
import Mathlib.Algebra.Polynomial.Eval.SMul
import Mathlib.RingTheory.Polynomial.Pochhammer
import Mathlib.RingTheory.PowerSeries.WellKnown

/-!
# Hilbert polynomials

In this file, we formalise the following statement: if `F` is a field with characteristic `0`, then
given any `p : F[X]` and `d : ℕ`, there exists some `h : F[X]` such that for any large enough
`n : ℕ`, `h(n)` is equal to the coefficient of `Xⁿ` in the power series expansion of `p/(1 - X)ᵈ`.
This `h` is unique and is called the Hilbert polynomial of `p` and `d` (`Polynomial.hilbert p d`).

## Main definitions

* `Polynomial.hilbert p d`. If `F` is a field with characteristic `0`, `p : F[X]` and `d : ℕ`, then
`Polynomial.hilbert p d : F[X]` is the polynomial whose value at `n` equals the coefficient of
`Xⁿ` in the power series expansion of `p/(1 - X)ᵈ`

## TODO

* Prove that `Polynomial.hilbert p d : F[X]` is the polynomial whose value at `n` equals the
coefficient of `Xⁿ` in the power series expansion of `p/(1 - X)ᵈ`

* Hilbert polynomials of graded modules.
-/

open BigOperators Nat PowerSeries

namespace Polynomial

section greatestFactorOneSubNotDvd

variable {R : Type*} [CommRing R] (p : R[X]) (hp : p ≠ 0) (d : ℕ)

/--
Given a polynomial `p`, the factor `f` of `p` such that the product of `f` and
`(1 - X : R[X]) ^ p.rootMultiplicity 1` equals `p`. We define this here because if `p` is divisible
by `1 - X`, then the expression `p/(1 - X)ᵈ` can be reduced. We want to construct the Hilbert
polynomial based on the most reduced form of the fraction `p/(1 - X)ᵈ`. Later we will see that this
method of construction makes it much easier to calculate the specific degree of the Hilbert
polynomial.
-/
noncomputable def greatestFactorOneSubNotDvd : R[X] :=
((- 1 : R[X]) ^ p.rootMultiplicity 1) *
(exists_eq_pow_rootMultiplicity_mul_and_not_dvd p hp 1).choose

end greatestFactorOneSubNotDvd

variable (F : Type*) [Field F] [CharZero F]

/--
A polynomial which makes it easier to define the Hilbert polynomial. See also the theorem
`Polynomial.preHilbert_eq_choose_sub_add`, which states that for any `d k n : ℕ` with `k ≤ n`,
`(Polynomial.preHilbert d k).eval (n : F) = (n - k + d).choose d`.
-/
noncomputable def preHilbert (d k : ℕ) : F[X] :=
(d.factorial : F)⁻¹ • ((ascPochhammer F d).comp (X - (C (k : F)) + 1))

theorem preHilbert_eq_choose_sub_add (d k n : ℕ) (hkn : k ≤ n):
(preHilbert F d k).eval (n : F) = (n - k + d).choose d := by
rw [preHilbert, eval_smul, eval_comp, map_natCast, eval_add, eval_sub, eval_X, eval_natCast,
eval_one, smul_eq_mul, ← cast_sub hkn, ← cast_add_one, ← ascPochhammer_eval_cast,
ascPochhammer_nat_eq_ascFactorial, ascFactorial_eq_factorial_mul_choose, cast_mul,
← mul_assoc]
simp only [isUnit_iff_ne_zero, ne_eq, Ne.symm <| @NeZero.ne' _ _ _ <| @NeZero.charZero _ _
⟨factorial_ne_zero d⟩ .., not_false_eq_true, IsUnit.inv_mul_cancel, one_mul]
FMLJohn marked this conversation as resolved.
Show resolved Hide resolved

variable {F}

/--
Given `p : F[X]` and `d : ℕ`, the Hilbert polynomial of `p` and `d`. Later we will
show that `PowerSeries.coeff F n (p * (PowerSeries.invOneSubPow F d))` is equal to
`(Polynomial.hilbert p d).eval (n : F)` for any large enough `n : ℕ`, which is the
key property of the Hilbert polynomial.
-/
noncomputable def hilbert (p : F[X]) (d : ℕ) : F[X] :=
FMLJohn marked this conversation as resolved.
Show resolved Hide resolved
let _ := Classical.propDecidable (p = 0)
if h : p = 0 then 0
else if d ≤ p.rootMultiplicity 1 then 0
else ∑ i in Finset.range ((greatestFactorOneSubNotDvd p h).natDegree + 1),
((greatestFactorOneSubNotDvd p h).coeff i) • preHilbert F (d - (p.rootMultiplicity 1) - 1) i

end Polynomial
5 changes: 2 additions & 3 deletions Mathlib/RingTheory/PowerSeries/WellKnown.lean
Original file line number Diff line number Diff line change
Expand Up @@ -152,10 +152,9 @@ theorem invOneSubPow_inv_eq_one_sub_pow :
| zero => exact Eq.symm <| pow_zero _
| succ d => rfl

theorem invOneSubPow_inv_eq_one_of_eq_zero (h : d = 0) :
(invOneSubPow S d).inv = 1 := by
theorem invOneSubPow_inv_zero_eq_one : (invOneSubPow S 0).inv = 1 := by
delta invOneSubPow
simp only [h, Units.inv_eq_val_inv, inv_one, Units.val_one]
simp only [Units.inv_eq_val_inv, inv_one, Units.val_one]
erdOne marked this conversation as resolved.
Show resolved Hide resolved

theorem mk_add_choose_mul_one_sub_pow_eq_one :
(mk fun n ↦ Nat.choose (d + n) d : S⟦X⟧) * ((1 - X) ^ (d + 1)) = 1 :=
Expand Down
7 changes: 4 additions & 3 deletions scripts/noshake.json
Original file line number Diff line number Diff line change
Expand Up @@ -317,14 +317,15 @@
"Mathlib.RingTheory.PowerSeries.Basic":
["Mathlib.Algebra.CharP.Defs", "Mathlib.Tactic.MoveAdd"],
"Mathlib.RingTheory.PolynomialAlgebra": ["Mathlib.Data.Matrix.DMatrix"],
"Mathlib.RingTheory.Polynomial.Hilbert":
["Mathlib.RingTheory.PowerSeries.WellKnown"],
kbuzzard marked this conversation as resolved.
Show resolved Hide resolved
"Mathlib.RingTheory.MvPolynomial.Homogeneous":
["Mathlib.Algebra.DirectSum.Internal"],
"Mathlib.RingTheory.KrullDimension.Basic":
["Mathlib.Algebra.MvPolynomial.CommRing", "Mathlib.Algebra.Polynomial.Basic"],
"Mathlib.RingTheory.IntegralClosure.IsIntegral.Defs":
["Mathlib.Tactic.Algebraize"],
"Mathlib.RingTheory.Finiteness.Defs":
["Mathlib.Tactic.Algebraize"],
"Mathlib.RingTheory.Finiteness.Defs": ["Mathlib.Tactic.Algebraize"],
"Mathlib.RingTheory.Binomial": ["Mathlib.Algebra.Order.Floor"],
"Mathlib.RingTheory.Adjoin.Basic": ["Mathlib.LinearAlgebra.Finsupp.SumProd"],
"Mathlib.RepresentationTheory.FdRep":
Expand Down Expand Up @@ -365,7 +366,6 @@
"Mathlib.Deprecated.NatLemmas": ["Batteries.Data.Nat.Lemmas", "Batteries.WF"],
"Mathlib.Deprecated.MinMax": ["Mathlib.Order.MinMax"],
"Mathlib.Deprecated.ByteArray": ["Batteries.Data.ByteSubarray"],
"Mathlib.Data.ENat.Lattice": ["Mathlib.Algebra.Group.Action.Defs"],
"Mathlib.Data.Vector.Basic": ["Mathlib.Control.Applicative"],
"Mathlib.Data.Set.Image":
["Batteries.Tactic.Congr", "Mathlib.Data.Set.SymmDiff"],
Expand All @@ -387,6 +387,7 @@
"Mathlib.Data.Int.Defs": ["Batteries.Data.Int.Order"],
"Mathlib.Data.FunLike.Basic": ["Mathlib.Logic.Function.Basic"],
"Mathlib.Data.Finset.Insert": ["Mathlib.Data.Finset.Attr"],
"Mathlib.Data.ENat.Lattice": ["Mathlib.Algebra.Group.Action.Defs"],
"Mathlib.Data.ByteArray": ["Batteries.Data.ByteSubarray"],
"Mathlib.Data.Bool.Basic": ["Batteries.Tactic.Init"],
"Mathlib.Control.Traversable.Instances": ["Mathlib.Control.Applicative"],
Expand Down