-
Notifications
You must be signed in to change notification settings - Fork 3
EVStates
Johan Vandegriff edited this page Dec 16, 2016
·
2 revisions
EVStates is a factory class that extends States from the state-machine-framework. It inherits all the factory methods from States, and adds its own that relate to FTC.
Some that we use frequently are:
- mecanumDrive -- drives with the mecanum wheels and stabilizes with the gyro
- servoTurn -- turns a servo to a preset at a given speed
- calibrateGyro -- waits for the gyro sensor to finish calibrating
Some others that are also useful are:
- drive -- drives with a TwoMotors object
- turn -- tuns with a TwoMotors object
- oneWheelTurn -- powers one wheel to turn
- motorTurn -- turns a motor
ftc/evlib/statemachine/EVStates.java
package ftc.evlib.statemachine;
import com.google.common.collect.ImmutableList;
import com.qualcomm.robotcore.hardware.GyroSensor;
import org.firstinspires.ftc.robotcore.external.navigation.VuforiaTrackable;
import java.util.List;
import ftc.electronvolts.statemachine.AbstractState;
import ftc.electronvolts.statemachine.BasicAbstractState;
import ftc.electronvolts.statemachine.EndCondition;
import ftc.electronvolts.statemachine.EndConditions;
import ftc.electronvolts.statemachine.State;
import ftc.electronvolts.statemachine.StateName;
import ftc.electronvolts.statemachine.States;
import ftc.electronvolts.statemachine.Transition;
import ftc.electronvolts.util.InputExtractor;
import ftc.electronvolts.util.ResultReceiver;
import ftc.electronvolts.util.TeamColor;
import ftc.electronvolts.util.units.Angle;
import ftc.electronvolts.util.units.Distance;
import ftc.electronvolts.util.units.Time;
import ftc.evlib.driverstation.Telem;
import ftc.evlib.hardware.control.LineUpControl;
import ftc.evlib.hardware.control.MecanumControl;
import ftc.evlib.hardware.control.RotationControl;
import ftc.evlib.hardware.control.RotationControls;
import ftc.evlib.hardware.control.TranslationControl;
import ftc.evlib.hardware.control.TranslationControls;
import ftc.evlib.hardware.mechanisms.Shooter;
import ftc.evlib.hardware.motors.MecanumMotors;
import ftc.evlib.hardware.motors.Motor;
import ftc.evlib.hardware.motors.NMotors;
import ftc.evlib.hardware.motors.TwoMotors;
import ftc.evlib.hardware.sensors.DigitalSensor;
import ftc.evlib.hardware.sensors.DistanceSensor;
import ftc.evlib.hardware.sensors.DoubleLineSensor;
import ftc.evlib.hardware.sensors.LineSensorArray;
import ftc.evlib.hardware.servos.ServoControl;
import ftc.evlib.hardware.servos.Servos;
import ftc.evlib.vision.framegrabber.FrameGrabber;
import ftc.evlib.vision.framegrabber.VuforiaFrameFeeder;
import ftc.evlib.vision.processors.BeaconColorResult;
import ftc.evlib.vision.processors.BeaconName;
import ftc.evlib.vision.processors.CloseUpColorProcessor;
import ftc.evlib.vision.processors.ImageProcessor;
import ftc.evlib.vision.processors.ImageProcessorResult;
import ftc.evlib.vision.processors.Location;
import ftc.evlib.vision.processors.RGBBeaconProcessor;
import ftc.evlib.vision.processors.VuforiaBeaconColorProcessor;
import static ftc.evlib.driverstation.Telem.telemetry;
import static ftc.evlib.vision.framegrabber.GlobalFrameGrabber.frameGrabber;
import static ftc.evlib.vision.framegrabber.VuforiaFrameFeeder.beacons;
/**
* This file was made by the electronVolts, FTC team 7393
* Date Created: 5/10/16
*
* @see State
* @see EVStateMachineBuilder
*/
public class EVStates extends States {
/**
* Displays the left and right color of a BeaconColorResult
*
* @param stateName the name of the state
* @param receiver the ResultReceiver to get the color from
* @return the created State
* @see BeaconColorResult
*/
public static State displayBeaconColorResult(StateName stateName, final ResultReceiver<BeaconColorResult> receiver) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
}
@Override
public boolean isDone() {
Telem.displayBeaconColorResult(receiver);
return false;
}
@Override
public StateName getNextStateName() {
return null;
}
};
}
/**
* Displays the color of a BeaconColorResult.BeaconColor
*
* @param stateName the name of the state
* @param receiver the ResultReceiver to get the color from
* @return the created State
* @see BeaconColorResult
*/
public static State displayBeaconColor(StateName stateName, final ResultReceiver<BeaconColorResult.BeaconColor> receiver) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
}
@Override
public boolean isDone() {
Telem.displayBeaconColor(receiver);
return false;
}
@Override
public StateName getNextStateName() {
return null;
}
};
}
/**
* Uses vuforia to find the beacon target image, then uses opencv to determine the beacon color
*
* @param stateName the name of the state
* @param successState the state to go to if it succeeds
* @param failState the state to go to if it fails
* @param timeoutState the state to go to if it times out
* @param timeoutTime the time before it will time out
* @param vuforiaReceiver the ResultReceiver to get the VuforiaFramFeeder object from
* @param beaconColorResult the ResultReceiver to store the result in
* @param teamColor your team's color to decide which beacons to look for
* @param numFrames the number of frames to process
* @param saveImages whether or not to save the frames for logging
* @return the created State
* @see VuforiaFrameFeeder
* @see VuforiaBeaconColorProcessor
*/
//TODO assume that vuforia is initialized in findBeaconColorState
public static State findBeaconColorState(StateName stateName, final StateName successState, final StateName failState, final StateName timeoutState, Time timeoutTime, final ResultReceiver<VuforiaFrameFeeder> vuforiaReceiver, final ResultReceiver<BeaconColorResult> beaconColorResult, TeamColor teamColor, final int numFrames, final boolean saveImages) {
final List<BeaconName> beaconNames = BeaconName.getNamesForTeamColor(teamColor);
final EndCondition timeout = EndConditions.timed(timeoutTime);
return new BasicAbstractState(stateName) {
private VuforiaFrameFeeder vuforia = null;
private VuforiaBeaconColorProcessor processor = null;
private BeaconName beaconName;
private int beaconIndex = 0; //index of the beaconNames list
private boolean timedOut = false;
@Override
public void init() {
timeout.init();
timedOut = false;
if (beaconIndex >= beaconNames.size()) {
beaconIndex = 0;
//we should never go here
}
beaconName = beaconNames.get(beaconIndex);
if (processor != null) {
processor.setBeaconName(beaconName);
}
}
@Override
public boolean isDone() {
if (vuforia == null && vuforiaReceiver.isReady()) {
vuforia = vuforiaReceiver.getValue();
// if (vuforia == null) {
// Log.e("EVStates", "vuforia is null!!!!!!!!!!!!!");
// }
processor = new VuforiaBeaconColorProcessor(vuforia);
processor.setBeaconName(beaconName);
VuforiaTrackable beacon = beacons.get(beaconName);
beacon.getTrackables().activate();
frameGrabber.setImageProcessor(processor);
frameGrabber.setSaveImages(saveImages);
frameGrabber.grabContinuousFrames();
}
timedOut = timeout.isDone();
return timedOut || processor != null && processor.getResultsFound() >= numFrames;
}
@Override
public StateName getNextStateName() {
beaconIndex++;
frameGrabber.stopFrameGrabber();
VuforiaTrackable beacon = beacons.get(beaconName);
beacon.getTrackables().deactivate();
BeaconColorResult result = processor.getAverageResult();
processor.reset();
BeaconColorResult.BeaconColor leftColor = result.getLeftColor();
BeaconColorResult.BeaconColor rightColor = result.getRightColor();
if ((leftColor == BeaconColorResult.BeaconColor.RED && rightColor == BeaconColorResult.BeaconColor.BLUE)
|| (leftColor == BeaconColorResult.BeaconColor.BLUE && rightColor == BeaconColorResult.BeaconColor.RED)) {
beaconColorResult.setValue(result);
return successState;
} else {
beaconColorResult.setValue(new BeaconColorResult());
if (timedOut) {
return timeoutState;
} else {
return failState;
}
}
}
};
}
public static State findColorState(StateName stateName, final StateName successState, final StateName unknownState, final ResultReceiver<VuforiaFrameFeeder> vuforiaReceiver, final ResultReceiver<BeaconColorResult.BeaconColor> colorResult, final boolean saveImages) {
return new BasicAbstractState(stateName) {
private VuforiaFrameFeeder vuforia = null;
private CloseUpColorProcessor processor = null;
private boolean timedOut = false;
@Override
public void init() {
vuforia = vuforiaReceiver.getValue();
processor = new CloseUpColorProcessor();
frameGrabber.setImageProcessor(processor);
frameGrabber.setSaveImages(saveImages);
frameGrabber.grabSingleFrame();
}
@Override
public boolean isDone() {
return frameGrabber.isResultReady();
}
@Override
public StateName getNextStateName() {
BeaconColorResult.BeaconColor result = (BeaconColorResult.BeaconColor) frameGrabber.getResult().getResult();
colorResult.setValue(result);
if (result == BeaconColorResult.BeaconColor.RED || result == BeaconColorResult.BeaconColor.BLUE) {
return successState;
} else {
return unknownState;
}
}
};
}
public static State beaconColorSwitch(StateName stateName, final StateName redState, final StateName blueState, final StateName unknownState, ResultReceiver<BeaconColorResult.BeaconColor> colorResult) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
}
@Override
public boolean isDone() {
return true;
}
@Override
public StateName getNextStateName() {
BeaconColorResult.BeaconColor result = (BeaconColorResult.BeaconColor) frameGrabber.getResult().getResult();
switch (result) {
case RED:
return redState;
case BLUE:
return blueState;
default:
return unknownState;
}
}
};
}
/**
* use the camera to detect and drive up to the beacon
*
* @param stateName the name of the state
* @param doneState the state to go to if it works
* @param lostObjectState the state to go to if it cannot find the beacon
* @param timeoutState the state to go to if it times out
* @param timeoutMillis the number of milliseconds before the timeout
* @param mecanumControl the mecanum wheels
* @param frameGrabber access to the camera frames
* @return the created State
*/
public static State mecanumCameraTrack(StateName stateName, final StateName doneState, final StateName lostObjectState, final StateName timeoutState, long timeoutMillis, final MecanumControl mecanumControl, final FrameGrabber frameGrabber, ImageProcessor<? extends Location> imageProcessor) {
mecanumControl.setDriveMode(MecanumMotors.MecanumDriveMode.NORMALIZED);
final TranslationControl beaconTrackingControl = TranslationControls.cameraTracking(frameGrabber, imageProcessor);
final long timeoutTime = System.currentTimeMillis() + timeoutMillis;
return new BasicAbstractState(stateName) {
@Override
public void init() {
mecanumControl.setTranslationControl(beaconTrackingControl);
}
@Override
public boolean isDone() {
return !mecanumControl.translationWorked() || beaconTrackingControl.getTranslation().getLength() < 0.1 || System.currentTimeMillis() >= timeoutTime;
}
@Override
public StateName getNextStateName() {
mecanumControl.stop();
if (beaconTrackingControl.getTranslation().getLength() < 0.1) {
return doneState;
} else {
if (!mecanumControl.translationWorked()) {
return lostObjectState;
} else {
return timeoutState;
}
}
}
};
}
/**
* @param stateName the name of the state
* @param nextStateName the name of the next state
* @param imageProcessor the object that processes the image
* @param resultReceiver the object that stores the image
* @return the created State
*/
public static State processFrame(StateName stateName, final StateName nextStateName, final ImageProcessor imageProcessor, final ResultReceiver<ImageProcessorResult> resultReceiver) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
frameGrabber.setImageProcessor(imageProcessor);
frameGrabber.grabSingleFrame();
}
@Override
public boolean isDone() {
return frameGrabber.isResultReady();
}
@Override
public StateName getNextStateName() {
resultReceiver.setValue(frameGrabber.getResult());
return nextStateName;
}
};
}
/**
* @param stateName the name of the state
* @param unknownUnknownState if both sides are unknown
* @param unknownRedState if the left is unknown and the right is red
* @param unknownBlueState if the left is unknown and the right is blue
* @param redUnknownState if the left is red and the right is unknown
* @param redRedState if the left is red and the right is red
* @param redBlueState if the left is red and the right is blue
* @param blueUnknownState if the left is blue and the right is unknown
* @param blueRedState if the left is blue and the right is red
* @param blueBlueState if the left is blue and the right is blue
* @return the created State
*/
public static State processBeaconPicture(StateName stateName,
final StateName unknownUnknownState, final StateName unknownRedState, final StateName unknownBlueState,
final StateName redUnknownState, final StateName redRedState, final StateName redBlueState,
final StateName blueUnknownState, final StateName blueRedState, final StateName blueBlueState
) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
frameGrabber.setImageProcessor(new RGBBeaconProcessor());
frameGrabber.grabSingleFrame();
}
@Override
public boolean isDone() {
return frameGrabber.isResultReady();
}
@Override
public StateName getNextStateName() {
BeaconColorResult beaconColorResult = (BeaconColorResult) frameGrabber.getResult().getResult();
BeaconColorResult.BeaconColor leftColor = beaconColorResult.getLeftColor();
BeaconColorResult.BeaconColor rightColor = beaconColorResult.getRightColor();
if (leftColor == BeaconColorResult.BeaconColor.RED) {
if (rightColor == BeaconColorResult.BeaconColor.RED) {
return redRedState;
} else if (rightColor == BeaconColorResult.BeaconColor.BLUE) {
return redBlueState;
} else {
return redUnknownState;
}
} else if (leftColor == BeaconColorResult.BeaconColor.BLUE) {
if (rightColor == BeaconColorResult.BeaconColor.RED) {
return blueRedState;
} else if (rightColor == BeaconColorResult.BeaconColor.BLUE) {
return blueBlueState;
} else {
return blueUnknownState;
}
} else {
if (rightColor == BeaconColorResult.BeaconColor.RED) {
return unknownRedState;
} else if (rightColor == BeaconColorResult.BeaconColor.BLUE) {
return unknownBlueState;
} else {
return unknownUnknownState;
}
}
}
};
}
/**
* @param stateName the name of the state
* @param nMotors the motors to turn off
* @return the created State
*/
public static State stop(StateName stateName, final NMotors nMotors) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
nMotors.stop();
}
@Override
public boolean isDone() {
return false;
}
@Override
public StateName getNextStateName() {
return null;
}
};
}
/**
* @param stateName the name of the state
* @param mecanumControl the motors to turn off
* @return the created State
*/
public static State stop(StateName stateName, final MecanumControl mecanumControl) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
mecanumControl.stop();
}
@Override
public boolean isDone() {
return false;
}
@Override
public StateName getNextStateName() {
return null;
}
};
}
/**
* @param stateName the name of the state
* @param message the message to display to the driver station
* @param value the value associated with that message
* @return the created State
*/
public static State telemetry(StateName stateName, final String message, final double value) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
}
@Override
public boolean isDone() {
telemetry.addData(message, value);
return false;
}
@Override
public StateName getNextStateName() {
return null;
}
};
}
/**
* @param stateName the name of the state
* @param message1 the first message to display to the driver station
* @param input1 an InputExtractor that returns the value associated with the first message
* @param message2 the second message to display to the driver station
* @param input2 an InputExtractor that returns the value associated with the second message
* @return the created State
*/
public static State telemetry(StateName stateName, final String message1, final InputExtractor<Double> input1, final String message2, final InputExtractor<Double> input2) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
}
@Override
public boolean isDone() {
telemetry.addData(message1, input1.getValue());
telemetry.addData(message2, input2.getValue());
return false;
}
@Override
public StateName getNextStateName() {
return null;
}
};
}
/**
* @param stateName the name of the state
* @param transitions the list of transitions to the next states
* @param message the message to display to the driver station
* @param value the value associated with that message
* @return the created State
*/
public static State telemetry(StateName stateName, List<Transition> transitions, final String message, final double value) {
return new AbstractState(stateName, transitions) {
@Override
public void init() {
}
@Override
public void run() {
telemetry.addData(message, value);
}
@Override
public void dispose() {
}
};
}
/**
* @param stateName the name of the state
* @param transitions the list of transitions to the next states
* @param message1 the first message to display to the driver station
* @param input1 an InputExtractor that returns the value associated with the first message
* @param message2 the second message to display to the driver station
* @param input2 an InputExtractor that returns the value associated with the second message
* @return the created State
*/
public static State telemetry(StateName stateName, List<Transition> transitions, final String message1, final InputExtractor<Double> input1, final String message2, final InputExtractor<Double> input2) {
return new AbstractState(stateName, transitions) {
@Override
public void init() {
}
@Override
public void run() {
telemetry.addData(message1, input1.getValue());
telemetry.addData(message2, input2.getValue());
}
@Override
public void dispose() {
}
};
}
/**
* @param stateName the name of the state
* @param nextStateName the name of the next state
* @param servos the servos to be initialized
* @return the created State
* @see Servos
*/
public static State servoInit(StateName stateName, final StateName nextStateName, final Servos servos) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
}
@Override
public boolean isDone() {
return servos.areServosDone();
}
@Override
public StateName getNextStateName() {
return nextStateName;
}
};
}
/**
* @param stateName the name of the state
* @param nextStateName the name of the next state
* @param gyro the gyro sensor to be calibrated
* @return the created State
* @see GyroSensor
*/
public static State calibrateGyro(StateName stateName, final StateName nextStateName, final GyroSensor gyro) {
gyro.calibrate();
return new BasicAbstractState(stateName) {
@Override
public void init() {
}
@Override
public boolean isDone() {
return !gyro.isCalibrating();
}
@Override
public StateName getNextStateName() {
return nextStateName;
}
};
}
/**
* @param stateName the name of the state
* @param nextStateName the name of the next state
* @param doubleLineSensor the 2 line sensors to be calibrated
* @return the created State
* @see DoubleLineSensor
*/
public static State calibrateLineSensor(StateName stateName, final StateName nextStateName, final DoubleLineSensor doubleLineSensor) {
doubleLineSensor.calibrate();
return new BasicAbstractState(stateName) {
@Override
public void init() {
}
@Override
public boolean isDone() {
return doubleLineSensor.isReady();
}
@Override
public StateName getNextStateName() {
return nextStateName;
}
};
}
/**
* Turn a servo to a preset at max speed
*
* @param stateName the name of the state
* @param nextStateName the name of the state to go to next
* @param servoControl the servo
* @param servoPreset the preset to go to
* @param waitForDone whether to wait for the servo to finish turning or move to the next state immediately
* @return the created State
* @see ServoControl
*/
public static State servoTurn(StateName stateName, StateName nextStateName, ServoControl servoControl, Enum servoPreset, boolean waitForDone) {
return servoTurn(stateName, nextStateName, servoControl, servoPreset, ServoControl.MAX_SPEED, waitForDone);
}
/**
* Turn a servo to a preset at a given speed
*
* @param stateName the name of the state
* @param nextStateName the name of the state to go to next
* @param servoControl the servo
* @param servoPreset the preset to go to
* @param speed the speed to turn the servo at
* @param waitForDone whether to wait for the servo to finish turning or move to the next state immediately
* @return the created State
* @see ServoControl
*/
public static State servoTurn(StateName stateName, final StateName nextStateName, final ServoControl servoControl, final Enum servoPreset, final double speed, final boolean waitForDone) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
servoControl.goToPreset(servoPreset, speed);
}
@Override
public boolean isDone() {
return !waitForDone || servoControl.isDone();
}
@Override
public StateName getNextStateName() {
return nextStateName;
}
};
}
/**
* Turn a servo to a position at max speed
*
* @param stateName the name of the state
* @param nextStateName the name of the state to go to next
* @param servoControl the servo
* @param servoPosition the position to go to
* @param waitForDone whether to wait for the servo to finish turning or move to the next state immediately
* @return the created State
* @see ServoControl
*/
public static State servoTurn(StateName stateName, StateName nextStateName, ServoControl servoControl, double servoPosition, boolean waitForDone) {
return servoTurn(stateName, nextStateName, servoControl, servoPosition, ServoControl.MAX_SPEED, waitForDone);
}
/**
* Turn a servo to a position at a given speed
*
* @param stateName the name of the state
* @param nextStateName the name of the state to go to next
* @param servoControl the servo
* @param servoPosition the position to go to
* @param speed the speed to turn the servo at
* @param waitForDone whether to wait for the servo to finish turning or move to the next state immediately
* @return the created State
* @see ServoControl
*/
public static State servoTurn(StateName stateName, final StateName nextStateName, final ServoControl servoControl, final double servoPosition, final double speed, final boolean waitForDone) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
servoControl.setPosition(servoPosition, speed);
}
@Override
public boolean isDone() {
return !waitForDone || servoControl.isDone();
}
@Override
public StateName getNextStateName() {
return nextStateName;
}
};
}
/**
* drive using the mecanum wheels
* travels for a certain amount of time defined by the robots speed and a desired distance
*
* @param stateName the name of the state
* @param nextStateName the next state to go to
* @param distance the distance to travel
* @param mecanumControl the mecanum wheels
* @param gyro the gyro sensor
* @param velocity the velocity to drive at
* @param direction the direction to drive
* @param orientation the angle to rotate to
* @param maxAngularSpeed the max speed to rotate to that angle
* @return the created State
* @see MecanumControl
* @see GyroSensor
* @see Distance
*/
public static State mecanumDrive(StateName stateName, final StateName nextStateName, Distance distance, final MecanumControl mecanumControl, final GyroSensor gyro, final double velocity, final Angle direction, final Angle orientation, final Angle tolerance, final double maxAngularSpeed) {
mecanumControl.setDriveMode(MecanumMotors.MecanumDriveMode.NORMALIZED);
double speedMetersPerMillisecond = mecanumControl.getMaxRobotSpeed().metersPerMillisecond() * velocity;
final double durationMillis = Math.abs(distance.meters() / speedMetersPerMillisecond);
final EndCondition gyroEC = EVEndConditions.gyroCloseTo(gyro, orientation, tolerance);
return new BasicAbstractState(stateName) {
long startTime = 0;
@Override
public void init() {
mecanumControl.setControl(
TranslationControls.constant(velocity, direction),
RotationControls.gyro(gyro, orientation, maxAngularSpeed)
);
startTime = System.currentTimeMillis();
}
@Override
public boolean isDone() {
long now = System.currentTimeMillis();
long elapsedTime = now - startTime;
if (elapsedTime >= durationMillis) {
mecanumControl.setTranslationControl(TranslationControls.ZERO);
return gyroEC.isDone();
}
return false;
}
@Override
public StateName getNextStateName() {
mecanumControl.stop();
return nextStateName;
}
};
}
/**
* drive using the mecanum wheels
*
* @param stateName the name of the state
* @param transitions the list of transitions to the next states
* @param mecanumControl the mecanum wheels
* @param gyro the gyro sensor
* @param velocity the velocity to drive at
* @param direction the direction to drive
* @param orientation the angle to rotate to
* @param maxAngularSpeed the max speed to rotate to that angle
* @return the created State
* @see MecanumControl
* @see GyroSensor
*/
public static State mecanumDrive(StateName stateName, List<Transition> transitions, final MecanumControl mecanumControl, final GyroSensor gyro, final double velocity, final Angle direction, final Angle orientation, final double maxAngularSpeed) {
mecanumControl.setDriveMode(MecanumMotors.MecanumDriveMode.NORMALIZED);
return new AbstractState(stateName, transitions) {
@Override
public void init() {
// OptionsFile optionsFile = new OptionsFile(EVConverters.getInstance(), FileUtil.getOptionsFile("AutoOptions.txt"));
//
// double max = optionsFile.get("gyro_max", Double.class);
// double gain = optionsFile.get("gyro_gain", Double.class);
mecanumControl.setControl(
TranslationControls.constant(velocity, direction),
RotationControls.gyro(gyro, orientation, maxAngularSpeed)
// RotationControls.gyro(gyro, orientation, max, false, gain)
);
}
@Override
public void run() {
}
@Override
public void dispose() {
mecanumControl.stop();
}
};
}
/**
* @param stateName the name of the state
* @param transitions the list of transitions to the next states
* @param mecanumControl the mecanum wheels
* @param gyro the gyro sensor
* @param velocity the velocity to drive at
* @param direction the direction to drive
* @param orientation the angle to rotate to
* @return the created State
* @see MecanumControl
* @see GyroSensor
*/
public static State mecanumDrive(StateName stateName, List<Transition> transitions, MecanumControl mecanumControl, GyroSensor gyro, double velocity, Angle direction, Angle orientation) {
return mecanumDrive(stateName, transitions, mecanumControl, gyro, velocity, direction, orientation, RotationControl.DEFAULT_MAX_ANGULAR_SPEED);
}
/**
* drive using the mecanum wheels
* travels for a certain amount of time defined by the robots speed and a desired distance
*
* @param stateName the name of the state
* @param nextStateName the next state to go to
* @param distance the distance to travel
* @param mecanumControl the mecanum wheels
* @param gyro the gyro sensor
* @param velocity the velocity to drive at
* @param direction the direction to drive
* @param orientation the angle to rotate to
* @return the created State
* @see MecanumControl
* @see GyroSensor
* @see Distance
*/
public static State mecanumDrive(StateName stateName, StateName nextStateName, Distance distance, final MecanumControl mecanumControl, final GyroSensor gyro, final double velocity, final Angle direction, final Angle orientation, final Angle tolerance) {
return mecanumDrive(stateName, nextStateName, distance, mecanumControl, gyro, velocity, direction, orientation, tolerance, RotationControl.DEFAULT_MAX_ANGULAR_SPEED);
}
/**
* follow a line with the mecanum wheels
*
* @param stateName the name of the state
* @param transitions the list of transitions to the next states
* @param lostLineState what state to go to if the line is lost
* @param mecanumControl the mecanum wheels
* @param doubleLineSensor the 2 line sensors
* @param velocity the velocity to drive at
* @param lineFollowDirection the direction (left or right) to follow the line at
* @return the created State
* @see MecanumControl
* @see TranslationControls
*/
public State mecanumLineFollow(StateName stateName, List<Transition> transitions, StateName lostLineState, final MecanumControl mecanumControl, final DoubleLineSensor doubleLineSensor, final double velocity, final TranslationControls.LineFollowDirection lineFollowDirection) {
transitions.add(new Transition(new EndCondition() {
@Override
public void init() {
}
@Override
public boolean isDone() {
return !mecanumControl.translationWorked();
}
}, lostLineState));
mecanumControl.setDriveMode(MecanumMotors.MecanumDriveMode.NORMALIZED);
return new AbstractState(stateName, transitions) {
@Override
public void init() {
mecanumControl.setTranslationControl(TranslationControls.lineFollow(doubleLineSensor, lineFollowDirection, velocity));
}
@Override
public void run() {
}
@Override
public void dispose() {
mecanumControl.stop();
}
};
}
/**
* Drive forward or backward with two motors
*
* @param stateName the name of the state
* @param transitions the transitions to new states
* @param twoMotors the motors to move
* @param velocity the velocity to drive at (negative for backwards)
* @return the created State
* @see TwoMotors
*/
public static State drive(StateName stateName, List<Transition> transitions, final TwoMotors twoMotors, final double velocity) {
return new AbstractState(stateName, transitions) {
@Override
public void init() {
twoMotors.runMotors(velocity, velocity);
}
@Override
public void run() {
}
@Override
public void dispose() {
twoMotors.runMotors(0, 0);
}
};
}
/**
* Turn left or right
*
* @param stateName the name of the state
* @param transitions the transitions to new states
* @param twoMotors the motors to move
* @param velocity the velocity to turn at (negative for turning left)
* @return the created State
* @see TwoMotors
*/
public static State turn(StateName stateName, List<Transition> transitions, final TwoMotors twoMotors, final double velocity) {
return new AbstractState(stateName, transitions) {
@Override
public void init() {
twoMotors.runMotors(velocity, -velocity);
}
@Override
public void run() {
}
@Override
public void dispose() {
twoMotors.runMotors(0, 0);
}
};
}
/**
* Turn with one wheel
*
* @param stateName the name of the state
* @param transitions the transitions to new states
* @param twoMotors the motors to move
* @param isRightWheel tells which wheel to turn
* @param velocity the velocity to turn the wheel at (negative for backwards)
* @return the created State
* @see TwoMotors
*/
public static State oneWheelTurn(StateName stateName, List<Transition> transitions, final TwoMotors twoMotors, final boolean isRightWheel, final double velocity) {
return new AbstractState(stateName, transitions) {
@Override
public void init() {
if (isRightWheel) {
twoMotors.runMotors(0, velocity);
} else {
twoMotors.runMotors(velocity, 0);
}
}
@Override
public void run() {
}
@Override
public void dispose() {
twoMotors.runMotors(0, 0);
}
};
}
/**
* Drive for a certain distance
*
* @param stateName the name of the state
* @param nextStateName the state to go to after the drive is done
* @param distance the distance to drive
* @param twoMotors the motors to move
* @param velocity the velocity to drive at (negative for backwards)
* @return the created State
* @see TwoMotors
*/
public static State drive(StateName stateName, StateName nextStateName, Distance distance, TwoMotors twoMotors, double velocity) {
double speedMetersPerMillisecond = twoMotors.getMaxRobotSpeed().metersPerMillisecond() * velocity;
double durationMillis = Math.abs(distance.meters() / speedMetersPerMillisecond);
return drive(stateName, ImmutableList.of(
new Transition(
EndConditions.timed((long) durationMillis),
nextStateName
)
), twoMotors, velocity);
}
/**
* Turn for a certain angle by calculating the time required for that angle
*
* @param stateName the name of the state
* @param nextStateName the state to go to when done turning
* @param angle the angle to turn
* @param minRobotTurnTime the time it takes for the robot to turn
* @param twoMotors the motors to run
* @param velocity the velocity to turn (negative for turning left)
* @return the created State
* @see TwoMotors
*/
public static State turn(StateName stateName, StateName nextStateName, Angle angle, Time minRobotTurnTime, TwoMotors twoMotors, double velocity) {
double speedRotationsPerMillisecond = velocity / minRobotTurnTime.milliseconds();
double durationMillis = Math.abs(angle.degrees() / 360 / speedRotationsPerMillisecond);
return turn(stateName, ImmutableList.of(
new Transition(
EndConditions.timed((long) durationMillis),
nextStateName
)
), twoMotors, velocity);
}
/**
* Turn for a certain angle using a gyro sensor
*
* @param stateName the name of the state
* @param nextStateName the state to go to when done turning
* @param angle the angle to turn
* @param gyro the gyro sensor to use
* @param twoMotors the motors to turn
* @param velocity the velocity to turn at (negative to turn left)
* @return the created State
* @see TwoMotors
*/
public static State turn(StateName stateName, StateName nextStateName, Angle angle, GyroSensor gyro, TwoMotors twoMotors, double velocity) {
return turn(stateName, ImmutableList.of(
new Transition(
EVEndConditions.gyroCloseToRelative(gyro, angle, Angle.fromDegrees(5)),
nextStateName
)
), twoMotors, velocity);
}
/**
* Turn with one wheel for a certain angle by calculating the time needed to turn that angle
*
* @param stateName the name of the state
* @param nextStateName the state to go to when done turning
* @param angle the angle to turn
* @param minRobotTurnTime the time it takes for the robot to turn
* @param twoMotors the motors to turn
* @param isRightWheel tells which wheel to turn
* @param velocity the velocity to turn the wheel at (negative for backwards)
* @return the created State
* @see TwoMotors
*/
public static State oneWheelTurn(StateName stateName, StateName nextStateName, Angle angle, Time minRobotTurnTime, TwoMotors twoMotors, boolean isRightWheel, double velocity) {
double speedRotationsPerMillisecond = velocity / minRobotTurnTime.milliseconds();
double durationMillis = Math.abs(2 * angle.degrees() / 360 / speedRotationsPerMillisecond);
velocity = Math.abs(velocity) * Math.signum(angle.radians());
if (isRightWheel) {
velocity *= -1;
}
return oneWheelTurn(stateName, ImmutableList.of(
new Transition(
EndConditions.timed((long) durationMillis),
nextStateName
)
), twoMotors, isRightWheel, velocity);
}
/**
* Turn with one wheel for a certain angle using a gyro sensor
*
* @param stateName the name of the state
* @param nextStateName the state to go to after the turn is done
* @param angle the angle to turn
* @param gyro the gyro sensor to use
* @param twoMotors the motors to turn
* @param isRightWheel which wheel to use
* @param velocity the velocity to turn the wheel at (negative for backwards)
* @return the created State
* @see TwoMotors
*/
public static State turn(StateName stateName, StateName nextStateName, Angle angle, GyroSensor gyro, TwoMotors twoMotors, boolean isRightWheel, double velocity) {
velocity = Math.abs(velocity) * Math.signum(angle.radians());
if (isRightWheel) {
velocity *= -1;
}
return oneWheelTurn(stateName, ImmutableList.of(
new Transition(
EVEndConditions.gyroCloseToRelative(gyro, angle, Angle.fromDegrees(5)),
nextStateName
)
), twoMotors, isRightWheel, velocity);
}
/**
* Turn a motor at a given power
*
* @param stateName the name of the state
* @param transitions the transitions to new states
* @param motor the motor to be turned
* @param power the power to turn the motor at
* @return the created State
* @see TwoMotors
*/
public static State motorTurn(StateName stateName, List<Transition> transitions, final Motor motor, final double power) {
return new AbstractState(stateName, transitions) {
@Override
public void init() {
motor.setPower(power);
}
@Override
public void run() {
}
@Override
public void dispose() {
motor.setPower(0);
}
};
}
/**
* Line up with the beacon using the line sensor array and distance sensor
*
* @param stateName the name of the state
* @param successState the state to go to if the line up succeeds
* @param failState the state to go to if the line up fails
* @param mecanumControl the mecanum wheels
* @param direction the direction angle to face
* @param gyro the gyro to use for rotation stabilization
* @param distSensor the distance sensor to detect distance from the beacon
* @param lineSensorArray the line sensor array to line up sideways with the line
* @param teamColor the team you are on and ...
* @param beaconColorResult ... the beacon configuration to decide which button to line up with
* @param distance the distance from the beacon to line up to
* @return the created State
* @see LineUpControl
*/
public static State beaconLineUp(StateName stateName, final StateName successState, final StateName failState, final MecanumControl mecanumControl, final Angle direction, final GyroSensor gyro, final DistanceSensor distSensor, final LineSensorArray lineSensorArray, TeamColor teamColor, final ResultReceiver<BeaconColorResult> beaconColorResult, final Distance distance) {
// final EndCondition distEndCondition = EVEndConditions.distanceSensorLess(distSensor, Distance.add(distance, Distance.fromInches(4)));
final EndCondition distEndCondition = EVEndConditions.distanceSensorLess(distSensor, distance);
final EndCondition gyroEndCondition = EVEndConditions.gyroCloseTo(gyro, direction, 2);
final BeaconColorResult.BeaconColor myColor = BeaconColorResult.BeaconColor.fromTeamColor(teamColor);
final BeaconColorResult.BeaconColor opponentColor = BeaconColorResult.BeaconColor.fromTeamColor(teamColor.opposite());
return new BasicAbstractState(stateName) {
private boolean success;
LineUpControl.Button buttonToLineUpWith;
@Override
public void init() {
buttonToLineUpWith = null;
if (beaconColorResult.isReady()) {
BeaconColorResult result = beaconColorResult.getValue();
BeaconColorResult.BeaconColor leftColor = result.getLeftColor();
BeaconColorResult.BeaconColor rightColor = result.getRightColor();
if (leftColor == myColor && rightColor == opponentColor) {
buttonToLineUpWith = LineUpControl.Button.LEFT;
}
if (leftColor == opponentColor && rightColor == myColor) {
buttonToLineUpWith = LineUpControl.Button.RIGHT;
}
}
success = buttonToLineUpWith != null;
LineUpControl lineUpControl = new LineUpControl(lineSensorArray, buttonToLineUpWith, distSensor, distance, gyro, direction);
mecanumControl.setTranslationControl(lineUpControl);
mecanumControl.setRotationControl(lineUpControl);
distEndCondition.init();
gyroEndCondition.init();
}
@Override
public boolean isDone() {
if (!mecanumControl.translationWorked()) {
success = false;
}
return !success || distEndCondition.isDone();
}
@Override
public StateName getNextStateName() {
mecanumControl.stop();
return success ? successState : failState;
}
};
}
public static State shoot(StateName stateName, final StateName nextStateName, final Shooter shooter, final int shots) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
shooter.shoot(shots);
}
@Override
public boolean isDone() {
// shooter.act();
return shooter.isDone();
}
@Override
public StateName getNextStateName() {
return nextStateName;
}
};
}
public static State gyroStabilize(StateName stateName, StateName nextStateName, final MecanumControl mecanumControl, final GyroSensor gyro, final Angle orientation, Angle tolerance) {
List<Transition> transitions = ImmutableList.of(
new Transition(EVEndConditions.gyroCloseTo(gyro, orientation, tolerance), nextStateName)
);
return new AbstractState(stateName, transitions) {
@Override
public void init() {
mecanumControl.setTranslationControl(TranslationControls.ZERO);
mecanumControl.setRotationControl(RotationControls.gyro(gyro, orientation));
}
@Override
public void run() {
}
@Override
public void dispose() {
mecanumControl.stop();
}
};
}
public static State switchPressed(StateName stateName, StateName pressedStateName, StateName timeoutStateName, DigitalSensor digitalSensor, Time timeout) {
return empty(stateName, ImmutableList.of(
new Transition(EndConditions.inputExtractor(digitalSensor), pressedStateName),
new Transition(EndConditions.timed((long) timeout.milliseconds()), timeoutStateName)
));
}
public static State initShooter(StateName stateName, final StateName nextStateName, final Shooter shooter) {
return new BasicAbstractState(stateName) {
@Override
public void init() {
shooter.initialize();
}
@Override
public boolean isDone() {
return shooter.isDone();
}
@Override
public StateName getNextStateName() {
return nextStateName;
}
};
}
public static State beaconColorSwitch(StateName stateName, final StateName leftButtonState, final StateName rightButtonState, final StateName unknownState, TeamColor teamColor, final ResultReceiver<BeaconColorResult> beaconColorResult) {
final BeaconColorResult.BeaconColor myColor = BeaconColorResult.BeaconColor.fromTeamColor(teamColor);
final BeaconColorResult.BeaconColor opponentColor = BeaconColorResult.BeaconColor.fromTeamColor(teamColor.opposite());
return new BasicAbstractState(stateName) {
private StateName nextState = unknownState;
@Override
public void init() {
if (beaconColorResult.isReady()) {
BeaconColorResult result = beaconColorResult.getValue();
BeaconColorResult.BeaconColor leftColor = result.getLeftColor();
BeaconColorResult.BeaconColor rightColor = result.getRightColor();
if (leftColor == myColor && rightColor == opponentColor) {
nextState = leftButtonState;
}
if (leftColor == opponentColor && rightColor == myColor) {
nextState = rightButtonState;
}
}
}
@Override
public boolean isDone() {
return true;
}
@Override
public StateName getNextStateName() {
return nextState;
}
};
}
}
This guide will step through the basics of how to set up OpModes using EVLib.
- Importing Into Your Project
- Sample Code
- Using EVLib Minimally
- Logging Example
- Robot Configuration
- Basic TeleOp Program
- Basic Autonomous Program
- Customizing StateMachineBuilder
- Servo Presets
- Adding Servos to the Configuration
- Adding Servos to TeleOp
- Adding Servos to Autonomous
- Vuforia and OpenCV Beacon Color Detection