Pytorch implementation of the deep convolutional GAN paper titled "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks" using PyTorch. Link to the original paper by Radford, A., Metz, L. and Chintala, S. You can also find the vanilla GAN paper by Goodfellow, I. et al. for training details.
First, install dependencies (a new python virtual environment is recommended).
# clone project
git clone https://github.com/visualCalculus/deep-convolutional-gan
# install project
cd deep-convolutional-gan
pip install -e .
pip install -r requirements.txt
Next, navigate to dcgan folder and run train.py with appropriate command line arguments.
# module folder
cd dcgan
# run module
python train.py --gpus=1 --max_epochs=5 --dataset=MNIST --image_size=32 --batch_size=128 --z_dim=100
--z_filter_shape=2 --n_channels=1 --learning_rate=2e-4 --beta1=0.5
@misc{visualCalculus2021dcgan,
title={deep-convolutional-gan},
author={Tejomay, Abhiroop},
publisher={GitHub}
journal={GitHub repository},
year={2021},
howpublished={\url{https://github.com/visualCalculus/deep-convolutional-gan}}
}