Skip to content

Latest commit

 

History

History
62 lines (44 loc) · 1.68 KB

README.md

File metadata and controls

62 lines (44 loc) · 1.68 KB

Deep Convolutional GANs with PyTorch

Description

Pytorch implementation of the deep convolutional GAN paper titled "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks" using PyTorch. Link to the original paper by Radford, A., Metz, L. and Chintala, S. You can also find the vanilla GAN paper by Goodfellow, I. et al. for training details.

DCGAN Generator

How to run

First, install dependencies (a new python virtual environment is recommended).

# clone project   
git clone https://github.com/visualCalculus/deep-convolutional-gan

# install project   
cd deep-convolutional-gan
pip install -e .
pip install -r requirements.txt

Next, navigate to dcgan folder and run train.py with appropriate command line arguments.

# module folder
cd dcgan

# run module
python train.py --gpus=1 --max_epochs=5 --dataset=MNIST --image_size=32 --batch_size=128 --z_dim=100
--z_filter_shape=2 --n_channels=1 --learning_rate=2e-4 --beta1=0.5

Results

DCGAN trained for 10 epochs on MNIST.

result1

DCGAN trained for 50 epochs on CIFAR10.

result2

Citation

@misc{visualCalculus2021dcgan,
  title={deep-convolutional-gan},
  author={Tejomay, Abhiroop},
  publisher={GitHub}
  journal={GitHub repository},
  year={2021},
  howpublished={\url{https://github.com/visualCalculus/deep-convolutional-gan}}
}