Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hierarchical sampling with composite mass model #20

Merged
merged 95 commits into from
Dec 8, 2023
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
Show all changes
95 commits
Select commit Hold shift + click to select a range
b2b213e
Add initial skeleton for composite preprocessing class
ajshajib Nov 30, 2023
bc65f3f
Update gitignore
ajshajib Nov 30, 2023
47bf601
Allow lens model list to be provided to KinConstraints class
ajshajib Nov 30, 2023
69e729d
Allow lens model list to be provided to KinConstraints class
ajshajib Nov 30, 2023
cfdf91b
Merge from main
ajshajib Dec 1, 2023
c2bc567
Format with black and docformatter
ajshajib Dec 1, 2023
e2fe031
Update hierarc/LensPosterior/base_config.py
ajshajib Dec 1, 2023
29abfd8
Update hierarc/Sampling/mcmc_sampling.py
ajshajib Dec 1, 2023
1f3be97
Update hierarc/Sampling/mcmc_sampling.py
ajshajib Dec 1, 2023
47bc845
Update hierarc/Likelihood/KDELikelihood/chain.py
ajshajib Dec 1, 2023
9e1e0f1
Update hierarc/Likelihood/KDELikelihood/chain.py
ajshajib Dec 1, 2023
bb4bded
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 1, 2023
098e4cf
Fix docstring formatting
ajshajib Dec 2, 2023
f7656e4
Fix merge conflict
ajshajib Dec 2, 2023
209ec31
Fix docstring format
ajshajib Dec 2, 2023
867be57
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 2, 2023
ccf056a
Fix docstring format
ajshajib Dec 2, 2023
c34c697
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 2, 2023
0fe162f
Fix docstring format
ajshajib Dec 2, 2023
c506be0
Add conversion functions from rho_s to kappa_s
ajshajib Dec 2, 2023
bacec27
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 2, 2023
4166081
Fix errors in preprocessing routine
ajshajib Dec 3, 2023
12fdb64
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 3, 2023
afe69df
Add sampling of lens model parameter with scaling
ajshajib Dec 4, 2023
7f2fab1
Merge branch 'feature/composite' of https://github.com/ajshajib/hierA…
ajshajib Dec 4, 2023
8a42b9b
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 4, 2023
ff42df0
Remove legacy function
ajshajib Dec 4, 2023
af63011
Remove anisotropy_scaling.py
ajshajib Dec 4, 2023
084ef9f
Reorder parameter scaling grid
ajshajib Dec 4, 2023
c48ba00
Fix errors
ajshajib Dec 4, 2023
ca34f8d
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 4, 2023
5a1e8c7
Remove debugging print statements
ajshajib Dec 4, 2023
222383f
Merge branch 'feature/composite' of https://github.com/ajshajib/hierA…
ajshajib Dec 4, 2023
41184dc
Apply bound on scaled mass model parameters
ajshajib Dec 4, 2023
eaae1a2
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 4, 2023
d2648e3
Merge branch 'main' of https://github.com/sibirrer/hierArc into featu…
ajshajib Dec 4, 2023
ff4b614
Merge branch 'feature/composite' of https://github.com/ajshajib/hierA…
ajshajib Dec 4, 2023
618ea43
Sample jointly from rho0 and r_scale to maintain covariance
ajshajib Dec 5, 2023
1da9e48
Update hierarc/LensPosterior/kin_constraints_composite.py
ajshajib Dec 5, 2023
f154569
Update test/test_Likelihood/test_LensLikelihood/test_ddt_dd_gauss_lik…
ajshajib Dec 5, 2023
d4a19b4
Update test/test_Likelihood/test_LensLikelihood/test_ddt_dd_gauss_lik…
ajshajib Dec 5, 2023
995cb3e
added tests cases for parameter_scaling
Dec 6, 2023
80660c0
edited docstrings
Dec 6, 2023
c31af5f
added test cases for hierarchy_likelihood
williyamshoe Dec 6, 2023
2e4f797
added test cases for hierarchy_likelihood
williyamshoe Dec 6, 2023
6e599e0
added test cases for hierarchy_likelihood
williyamshoe Dec 6, 2023
0420dbe
added test cases for lens_param
williyamshoe Dec 6, 2023
1b1a62b
Merge remote-tracking branch 'origin/feature/tests' into feature/tests
williyamshoe Dec 6, 2023
c94e4cc
added test cases for kin_constraints_composite
williyamshoe Dec 7, 2023
b32f4cd
removed impossible edge cases
williyamshoe Dec 7, 2023
34a03bc
Update test/test_LensPosterior/test_kin_constraints_composite.py
ajshajib Dec 7, 2023
d3f3b28
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
ca546ae
Update test/test_LensPosterior/test_kin_constraints.py
ajshajib Dec 7, 2023
c562767
Update test/test_LensPosterior/test_kin_constraints.py
ajshajib Dec 7, 2023
e54a9f5
Update test_kin_constraints.py
ajshajib Dec 7, 2023
f04c6f5
Update test/test_LensPosterior/test_kin_constraints_composite.py
ajshajib Dec 7, 2023
cd57d03
Update test/test_LensPosterior/test_kin_constraints_composite.py
ajshajib Dec 7, 2023
bc910fd
Update test/test_LensPosterior/test_kin_constraints_composite.py
ajshajib Dec 7, 2023
78ef5f7
Update test/test_LensPosterior/test_kin_constraints_composite.py
ajshajib Dec 7, 2023
07e6385
Update test/test_LensPosterior/test_kin_constraints_composite.py
ajshajib Dec 7, 2023
9d113de
Update test/test_LensPosterior/test_kin_constraints_composite.py
ajshajib Dec 7, 2023
e509b1e
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
2426804
Update test/test_LensPosterior/test_kin_constraints_composite.py
ajshajib Dec 7, 2023
1b11594
Update test/test_LensPosterior/test_kin_constraints_composite.py
ajshajib Dec 7, 2023
e28e06e
Update test/test_Likelihood/test_hierarchy_likelihood.py
ajshajib Dec 7, 2023
443ecda
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
2c50737
Update test/test_Likelihood/test_parameter_scaling.py
ajshajib Dec 7, 2023
ce633e4
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
78d6f02
Update test/test_Likelihood/test_parameter_scaling.py
ajshajib Dec 7, 2023
6d442ff
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
070fd1f
Update test/test_Likelihood/test_parameter_scaling.py
ajshajib Dec 7, 2023
1400f2e
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
df4e456
Update test/test_Likelihood/test_parameter_scaling.py
ajshajib Dec 7, 2023
1bd615f
Update test/test_Likelihood/test_parameter_scaling.py
ajshajib Dec 7, 2023
10c231d
Update test/test_Likelihood/test_parameter_scaling.py
ajshajib Dec 7, 2023
2f8649d
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
084c266
Update test/test_Likelihood/test_parameter_scaling.py
ajshajib Dec 7, 2023
a47987c
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
e734fba
Update test/test_Likelihood/test_parameter_scaling.py
ajshajib Dec 7, 2023
c399846
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
4b90e9a
Update test/test_Likelihood/test_parameter_scaling.py
ajshajib Dec 7, 2023
a73dc17
Update test/test_Likelihood/test_parameter_scaling.py
ajshajib Dec 7, 2023
25f77b1
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
29931b0
Merge pull request #1 from williyamshoe/feature/tests
ajshajib Dec 7, 2023
7ef3a71
Refactor variable naming
ajshajib Dec 7, 2023
c8cfa2c
Fix wrong numpy function name
ajshajib Dec 7, 2023
23943d9
Fix test errors
ajshajib Dec 7, 2023
ad2f041
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
1fe9525
Update requirements.txt
ajshajib Dec 7, 2023
f6501e0
Merge branch 'main' of https://github.com/sibirrer/hierArc into featu…
ajshajib Dec 7, 2023
d1cb13f
Merge branch 'feature/composite' of https://github.com/ajshajib/hierA…
ajshajib Dec 7, 2023
6873755
Improve tests for parameter_scaling.py
ajshajib Dec 7, 2023
3aafd5f
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 7, 2023
23d1c14
Merge branch 'main' of https://github.com/sibirrer/hierArc into featu…
ajshajib Dec 7, 2023
1de5e4e
Merge branch 'feature/composite' of https://github.com/ajshajib/hierA…
ajshajib Dec 7, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 13 additions & 4 deletions hierarc/LensPosterior/base_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ def __init__(
kwargs_seeing,
kwargs_numerics_galkin,
anisotropy_model,
lens_model_list=None,
kwargs_lens_light=None,
lens_light_model_list=["HERNQUIST"],
MGE_light=False,
Expand All @@ -48,15 +49,23 @@ def __init__(
:param anisotropy_model: type of stellar anisotropy model. See details in MamonLokasAnisotropy() class of lenstronomy.GalKin.anisotropy
:param multi_observations: bool, if True, interprets kwargs_aperture and kwargs_seeing as lists of multiple
observations
:param lens_model_list: keyword argument list of lens model (optional)
:param kwargs_lens_light: keyword argument list of lens light model (optional)
:param kwargs_mge_light: keyword arguments that go into the MGE decomposition routine
:param hernquist_approx: bool, if True, uses the Hernquist approximation for the light profile
"""
self._z_lens, self._z_source = z_lens, z_source
kwargs_model = {
"lens_model_list": ["SPP"],
"lens_light_model_list": lens_light_model_list,
}

if lens_model_list is None:
kwargs_model = {
"lens_model_list": ["SPP"],
"lens_light_model_list": lens_light_model_list,
}
else:
kwargs_model = {
"lens_model_list": lens_model_list,
"lens_light_model_list": lens_light_model_list,
}
TDCosmography.__init__(
self,
z_lens,
Expand Down
4 changes: 4 additions & 0 deletions hierarc/LensPosterior/kin_constraints.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ def __init__(
sigma_v_error_cov_matrix=None,
kwargs_lens_light=None,
lens_light_model_list=["HERNQUIST"],
lens_model_list=None,
MGE_light=False,
kwargs_mge_light=None,
hernquist_approx=True,
Expand Down Expand Up @@ -57,6 +58,7 @@ def __init__(
:param kwargs_numerics_galkin: numerical settings for the integrated line-of-sight velocity dispersion
:param anisotropy_model: type of stellar anisotropy model. See details in MamonLokasAnisotropy() class of
lenstronomy.GalKin.anisotropy
:param lens_model_list: keyword argument list of lens model (optional)
:param kwargs_lens_light: keyword argument list of lens light model (optional)
:param kwargs_mge_light: keyword arguments that go into the MGE decomposition routine
:param hernquist_approx: bool, if True, uses the Hernquist approximation for the light profile
Expand All @@ -70,6 +72,7 @@ def __init__(

self._kwargs_lens_light = kwargs_lens_light
self._anisotropy_model = anisotropy_model

BaseLensConfig.__init__(
self,
z_lens,
Expand All @@ -84,6 +87,7 @@ def __init__(
kwargs_seeing,
kwargs_numerics_galkin,
anisotropy_model,
lens_model_list=lens_model_list,
kwargs_lens_light=kwargs_lens_light,
lens_light_model_list=lens_light_model_list,
MGE_light=MGE_light,
Expand Down
269 changes: 269 additions & 0 deletions hierarc/LensPosterior/kin_constraints_composite.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,269 @@
import copy

import numpy as np
from hierarc.LensPosterior.kin_constraints import KinConstraints


class KinConstraintsComposite(KinConstraints):
def __init__(
self,
z_lens,
z_source,
gamma_in_array,
m2l_array,
r_scale_array,
m200_array,
theta_E,
theta_E_error,
gamma,
gamma_error,
r_eff,
r_eff_error,
sigma_v_measured,
kwargs_aperture,
kwargs_seeing,
kwargs_numerics_galkin,
anisotropy_model,
kwargs_lens_stars,
sigma_v_error_independent=None,
sigma_v_error_covariant=None,
sigma_v_error_cov_matrix=None,
kwargs_lens_light=None,
lens_light_model_list=["HERNQUIST"],
lens_model_list=None,
MGE_light=False,
kwargs_mge_light=None,
hernquist_approx=True,
sampling_number=1000,
num_psf_sampling=100,
num_kin_sampling=1000,
multi_observations=False,
):
"""

:param z_lens: lens redshift
:param z_source: source redshift
:param gamma_in_array: array of power-law slopes of the mass model
:param m2l_array: array of mass-to-light ratios of the stellar component
:param r_scale_array: array of halo scale radii in arc seconds
:param m200_array: array of halo masses in M_sun
:param theta_E: Einstein radius (in arc seconds)
:param theta_E_error: 1-sigma error on Einstein radius
:param gamma: power-law slope (2 = isothermal) estimated from imaging data
:param gamma_error: 1-sigma uncertainty on power-law slope
:param r_eff: half-light radius of the deflector (arc seconds)
:param r_eff_error: uncertainty on half-light radius
:param sigma_v_measured: numpy array of IFU velocity dispersion of the main deflector in km/s
:param sigma_v_error_independent: numpy array of 1-sigma uncertainty in velocity dispersion of the IFU
observation independent of each other
:param sigma_v_error_covariant: covariant error in the measured kinematics shared among all IFU measurements
:param sigma_v_error_cov_matrix: error covariance matrix in the sigma_v measurements (km/s)^2
:type sigma_v_error_cov_matrix: nxn matrix with n the length of the sigma_v_measured array
:param kwargs_aperture: spectroscopic aperture keyword arguments, see lenstronomy.Galkin.aperture for options
:param kwargs_seeing: seeing condition of spectroscopic observation, corresponds to kwargs_psf in the GalKin
module specified in lenstronomy.GalKin.psf
:param kwargs_numerics_galkin: numerical settings for the integrated line-of-sight velocity dispersion
:param anisotropy_model: type of stellar anisotropy model. See details in MamonLokasAnisotropy() class of
lenstronomy.GalKin.anisotropy
:param kwargs_lens_stars: keyword argument list of for stellar mass in the
lens model
:param kwargs_lens_light: keyword argument list of lens light model (optional)
:param kwargs_mge_light: keyword arguments that go into the MGE decomposition routine
:param hernquist_approx: bool, if True, uses the Hernquist approximation for the light profile
:param multi_observations: bool, if True, interprets kwargs_aperture and kwargs_seeing as lists of multiple
observations
"""
self._m200_array = m200_array
self._r_scale_array = r_scale_array
self.gamma_in_array = gamma_in_array
self.m2l_array = m2l_array

super(KinConstraintsComposite, self).__init__(
z_lens,
z_source,
theta_E,
theta_E_error,
gamma,
gamma_error,
r_eff,
r_eff_error,
sigma_v_measured,
kwargs_aperture,
kwargs_seeing,
kwargs_numerics_galkin,
anisotropy_model,
sigma_v_error_independent=sigma_v_error_independent,
sigma_v_error_covariant=sigma_v_error_covariant,
sigma_v_error_cov_matrix=sigma_v_error_cov_matrix,
kwargs_lens_light=kwargs_lens_light,
lens_light_model_list=lens_light_model_list,
lens_model_list=lens_model_list,
MGE_light=MGE_light,
kwargs_mge_light=kwargs_mge_light,
hernquist_approx=hernquist_approx,
sampling_number=sampling_number,
num_psf_sampling=num_psf_sampling,
num_kin_sampling=num_kin_sampling,
multi_observations=multi_observations,
)

self._kwargs_lens_stars = kwargs_lens_stars

def get_kappa_s(self, m200, r_scale):
"""Computes the surface mass density of the NFW halo at the scale radius.

:param m200: halo mass in M_sun
:param r_scale: halo scale radius in arc seconds
:return: surface mass density divided by the critical density
"""
return m200 * r_scale # placeholder, To-do

def j_kin_draw_composite(self, kwargs_anisotropy, gamma_in, m2l, no_error=False):
"""One simple sampling realization of the dimensionless kinematics of the model.

:param kwargs_anisotropy: keyword argument of anisotropy setting
:param gamma_in: power-law slope of the mass model
:param m2l: mass-to-light ratio of the stellar component
:param no_error: bool, if True, does not render from the uncertainty but uses
the mean values instead
:return: dimensionless kinematic component J() Birrer et al. 2016, 2019
"""
m200_draw, r_scale_draw, r_eff_draw, delta_r_eff = self.draw_lens(
no_error=no_error
)
kappa_s = self.get_kappa_s(m200_draw, r_scale_draw)

kwargs_lens_stars = copy.deepcopy(self._kwargs_lens_stars)
for kwargs in kwargs_lens_stars:
kwargs["amp"] *= m2l

if "sigma" in kwargs:
kwargs["sigma"] *= delta_r_eff
elif "Rs" in kwargs:
kwargs["Rs"] *= delta_r_eff
elif "R_sersic" in kwargs:
kwargs["R_sersic"] *= delta_r_eff

kwargs_light = copy.deepcopy(self._kwargs_lens_light)

for kwargs in kwargs_light:
if "sigma" in kwargs:
kwargs["sigma"] *= delta_r_eff
elif "Rs" in kwargs:
kwargs["Rs"] *= delta_r_eff
elif "R_sersic" in kwargs:
kwargs["R_sersic"] *= delta_r_eff

kwargs_lens = [
{
"Rs": r_scale_draw,
"gamma_in": gamma_in,
"kappa_s": kappa_s,
"center_x": 0,
"center_y": 0,
},
kwargs_lens_stars,
]

j_kin = self.velocity_dispersion_map_dimension_less(
kwargs_lens=kwargs_lens,
kwargs_lens_light=kwargs_light,
kwargs_anisotropy=kwargs_anisotropy,
r_eff=r_eff_draw,
)
return j_kin

def hierarchy_configuration(self, num_sample_model=20):
"""Routine to configure the likelihood to be used in the hierarchical sampling.
In particular, a default configuration is set to compute the Gaussian
approximation of Ds/Dds by sampling the posterior and the estimate of the
variance of the sample. The anisotropy scaling is then performed. Different
anisotropy models are supported.

:param num_sample_model: number of samples drawn from the lens and light model
posterior to compute the dimensionless kinematic component J()
:return: keyword arguments
"""

j_model_list, error_cov_j_sqrt = self.model_marginalization(num_sample_model)
ani_scaling_grid_list = self.anisotropy_scaling()

error_cov_measurement = self.error_cov_measurement
# configuration keyword arguments for the hierarchical sampling
kwargs_likelihood = {
"z_lens": self._z_lens,
"z_source": self._z_source,
"likelihood_type": "IFUKinCov",
"sigma_v_measurement": self._sigma_v_measured,
"anisotropy_model": self._anisotropy_model,
"j_model": j_model_list,
"error_cov_measurement": error_cov_measurement,
"error_cov_j_sqrt": error_cov_j_sqrt,
"ani_param_array": self.ani_param_array,
"gamma_in_array": self.gamma_in_array,
"m2l_array": self.m2l_array,
"ani_scaling_grid_list": ani_scaling_grid_list,
}
return kwargs_likelihood

def _anisotropy_scaling_relative(self, j_ani_0):
"""Anisotropy scaling relative to a default J prediction.

:param j_ani_0: default J() prediction for default anisotropy
:return: list of arrays (for the number of measurements) according to anisotropy
scaling
"""
num_data = len(self._sigma_v_measured)

if self._anisotropy_model == "GOM":
ani_scaling_grid_list = [
np.zeros(
(
len(self.gamma_in_array),
len(self.m2l_array),
len(self.ani_param_array[0]),
len(self.ani_param_array[1]),
)
)
for _ in range(num_data)
]
for i, a_ani in enumerate(self.ani_param_array[0]):
for j, beta_inf in enumerate(self.ani_param_array[1]):
for k, g_in in enumerate(self.gamma_in_array):
for l, m2l in enumerate(self.m2l_array):
kwargs_anisotropy = self.anisotropy_kwargs(
a_ani=a_ani, beta_inf=beta_inf
)
j_kin_ani = self.j_kin_draw_composite(
kwargs_anisotropy, g_in, m2l, no_error=True
)

for m, j_kin in enumerate(j_kin_ani):
ani_scaling_grid_list[m][k, l, i, j] = (
j_kin / j_ani_0[m]
)
# perhaps change the order
elif self._anisotropy_model in ["OM", "const"]:
ani_scaling_grid_list = [
np.zeros(
(
len(self.gamma_in_array),
len(self.m2l_array),
len(self.ani_param_array[0]),
len(self.ani_param_array[1]),
)
)
for _ in range(num_data)
]
for i, a_ani in enumerate(self.ani_param_array):
for k, g_in in enumerate(self.gamma_in_array):
for l, m2l in enumerate(self.m2l_array):
kwargs_anisotropy = self.anisotropy_kwargs(a_ani)
j_kin_ani = self.j_kin_draw_composite(
kwargs_anisotropy, g_in, m2l, no_error=True
)
for m, j_kin in enumerate(j_kin_ani):
ani_scaling_grid_list[m][k, l, i] = j_kin / j_ani_0[m]
else:
raise ValueError("anisotropy model %s not valid." % self._anisotropy_model)
return ani_scaling_grid_list
6 changes: 6 additions & 0 deletions hierarc/Likelihood/KDELikelihood/chain.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,6 +147,12 @@ def import_Planck_chain(datapath, kw, probe, params, cosmology, rescale=True):
:param datapath: (str). Path to the Planck chain :param kw: (str). Planck base
cosmology keyword. For example, "base" or "base_omegak". See
https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/Cosmological_Parameters.
:param datapath: (str). Path to the Planck chain
:param kw: (str). Planck base cosmology keyword. For example, "base" or "base_omegak". See https://wiki.cosmos.esa.int/planck-legacy-
:param datapath: (str). Path to the Planck chain
:param kw: (str). Planck base cosmology keyword. For example, "base" or
"base_omegak". See https://wiki.cosmos.esa.int/planck-legacy-
archive/index.php/Cosmological_Parameters.
ajshajib marked this conversation as resolved.
Show resolved Hide resolved
:param datapath: (str). Path to the Planck chain
:param kw: (str). Planck base cosmology keyword. For example, "base" or
"base_omegak". See https://wiki.cosmos.esa.int/planck-legacy-
Expand Down
8 changes: 5 additions & 3 deletions hierarc/Sampling/mcmc_sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,9 +7,11 @@ class MCMCSampler(object):
"""Class which executes the different sampling methods."""

def __init__(self, *args, **kwargs):
"""Initialise the classes of the chain and for parameter options :param args:
positional arguments for the CosmoLikelihood() instance :param kwargs: keyword
arguments for the CosmoLikelihood() instance."""
"""Initialise the classes of the chain and for parameter options

:param args: positional arguments for the CosmoLikelihood() instance
:param kwargs: keyword arguments for the CosmoLikelihood() instance.
"""
self.chain = CosmoLikelihood(*args, **kwargs)
self.param = self.chain.param

Expand Down
Loading