forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
…rowd#238) * Implemente dataloader for VISTEC_TP_TH_21 * Apply suggestions from code review Co-authored-by: James Jaya <[email protected]> * Add detailed citation --------- Co-authored-by: James Jaya <[email protected]>
- Loading branch information
1 parent
12e42f8
commit 31b3e4c
Showing
2 changed files
with
183 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
183 changes: 183 additions & 0 deletions
183
seacrowd/sea_datasets/vistec_tp_th_21/vistec_tp_th_21.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import os | ||
import re | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@inproceedings{limkonchotiwat-etal-2021-handling, | ||
title = "Handling Cross- and Out-of-Domain Samples in {T}hai Word Segmentation", | ||
author = "Limkonchotiwat, Peerat and | ||
Phatthiyaphaibun, Wannaphong and | ||
Sarwar, Raheem and | ||
Chuangsuwanich, Ekapol and | ||
Nutanong, Sarana", | ||
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", | ||
month = aug, | ||
year = "2021", | ||
address = "Online", | ||
publisher = "Association for Computational Linguistics", | ||
url = "https://aclanthology.org/2021.findings-acl.86", | ||
doi = "10.18653/v1/2021.findings-acl.86", | ||
pages = "1003--1016", | ||
} | ||
""" | ||
|
||
_DATASETNAME = "vistec_tp_th_21" | ||
|
||
_DESCRIPTION = """\ | ||
The largest social media domain datasets for Thai text processing (word segmentation, | ||
misspell correction and detection, and named-entity boundary) called "VISTEC-TP-TH-2021" or VISTEC-2021. | ||
VISTEC corpus contains 49,997 sentences with 3.39M words where the collection was manually annotated by | ||
linguists on four tasks, namely word segmentation, misspelling detection and correction, | ||
and named entity recognition. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/mrpeerat/OSKut/tree/main/VISTEC-TP-TH-2021" | ||
|
||
|
||
_LANGUAGES = ["tha"] | ||
|
||
|
||
_LICENSE = Licenses.CC_BY_SA_3_0.value | ||
|
||
_LOCAL = False | ||
|
||
_URLS = { | ||
"train": "https://raw.githubusercontent.com/mrpeerat/OSKut/main/VISTEC-TP-TH-2021/train/VISTEC-TP-TH-2021_train_proprocessed.txt", | ||
"test": "https://raw.githubusercontent.com/mrpeerat/OSKut/main/VISTEC-TP-TH-2021/test/VISTEC-TP-TH-2021_test_proprocessed.txt", | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class VISTEC21Dataset(datasets.GeneratorBasedBuilder): | ||
""" | ||
The largest social media domain datasets for Thai text processing (word segmentation, | ||
misspell correction and detection, and named-entity boundary) called "VISTEC-TP-TH-2021" or VISTEC-2021. | ||
""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
SEACROWD_SCHEMA_NAME = "seq_label" | ||
LABEL_CLASSES = ["0", "1"] | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=_DATASETNAME, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=_DATASETNAME, | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"tokens": datasets.Sequence(datasets.Value("string")), | ||
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=self.LABEL_CLASSES)), | ||
} | ||
) | ||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
features = schemas.seq_label_features(self.LABEL_CLASSES) | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
data_files = { | ||
"train": Path(dl_manager.download_and_extract(_URLS["train"])), | ||
"test": Path(dl_manager.download_and_extract(_URLS["test"])), | ||
} | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={"filepath": data_files["train"], "split": "train"}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={"filepath": data_files["test"], "split": "test"}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
label_key = "ner_tags" if self.config.schema == "source" else "labels" | ||
|
||
with open(filepath, "r", encoding="utf-8") as f: | ||
lines = f.readlines() | ||
id = 0 | ||
for line in lines: | ||
tokens = line.split("|") | ||
token_list = [] | ||
ner_tag = [] | ||
for token in tokens: | ||
if "<ne>" in token: | ||
token = token.replace("<ne>", "") | ||
token = token.replace("</ne>", "") | ||
token_list.append(token) | ||
ner_tag.append(1) | ||
continue | ||
if "</msp>" in token and "<msp value=" in token: | ||
token_list.append(re.findall(r"<msp value=([^>]*)>", token)[0]) | ||
ner_tag.append(0) | ||
continue | ||
if "<compound>" in token or "</compound>" in token: | ||
token = token.replace("<compound>", "") | ||
token = token.replace("</compound>", "") | ||
token_list.append(token) | ||
ner_tag.append(0) | ||
continue | ||
token_list.append(token) | ||
ner_tag.append(0) | ||
id += 1 | ||
yield id, { | ||
"id": str(id), | ||
"tokens": token_list, | ||
label_key: ner_tag, | ||
} |