Skip to content

Commit

Permalink
Closes SEACrowd#37 | Create dataset loader for MEmoLon (SEACrowd#155)
Browse files Browse the repository at this point in the history
* Implement dataloader for MEmoLon

* Fix UnicodeDecodeError from unit tests

* Update SEACrowdConfig dataset name to support f-strings

Co-authored-by: James Jaya <[email protected]>

* Remove en and zh from list of supported languages

* Remove DEFAULT_CONFIG_NAME

* Set DEFAULT_CONFIG_NAME to None

* Add typing to functions

* Add _LANGUAGES

---------

Co-authored-by: James Jaya <[email protected]>
  • Loading branch information
danjohnvelasco and jamesjaya authored Jan 10, 2024
1 parent e9b4cb6 commit 12e42f8
Showing 1 changed file with 142 additions and 0 deletions.
142 changes: 142 additions & 0 deletions seacrowd/sea_datasets/memolon/memolon.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@inproceedings{buechel-etal-2020-learning-evaluating,
title = "Learning and Evaluating Emotion Lexicons for 91 Languages",
author = {Buechel, Sven and
R{\"u}cker, Susanna and
Hahn, Udo},
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.112",
doi = "10.18653/v1/2020.acl-main.112",
pages = "1202--1217",
}
"""

_DATASETNAME = "memolon"

_DESCRIPTION = """\
MEmoLon is an emotion lexicons for 91 languages, each one covers eight emotional variables and comprises over 100k word entries. There are several versions of the lexicons, the difference being the choice of the expansion model.
"""

_HOMEPAGE = "https://zenodo.org/record/3756607/files/MTL_grouped.zip?download=1"

_LICENSE = Licenses.MIT.value

_URLS = {
_DATASETNAME: "https://zenodo.org/record/3756607/files/MTL_grouped.zip?download=1",
}

_SOURCE_VERSION = "1.0.0"

_LANGUAGES = ["ceb", "tl", "id", "su", "jv", "ms", "vi", "th", "my"]

_LANGUAGE_MAP = {"ceb": "Cebuano", "tl": "Tagalog", "id": "Indonesian", "su": "Sundanese", "jv": "Javanese", "ms": "Malay", "vi": "Vietnamese", "th": "Thai", "my": "Burmese"}

_SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION]


def seacrowd_config_constructor(lang: str, schema: str, version: str) -> SEACrowdConfig:
if lang not in _LANGUAGE_MAP:
raise ValueError(f"Invalid lang {lang}")

if schema != "source" and schema != "seacrowd_text_multi":
raise ValueError(f"Invalid schema: {schema}")

return SEACrowdConfig(
name="memolon_{lang}_{schema}".format(lang=lang, schema=schema),
version=datasets.Version(version),
description="MEmoLon {schema} schema for {lang} language".format(lang=_LANGUAGE_MAP[lang], schema=schema),
schema=schema,
subset_id="memolon",
)


class Memolon(datasets.GeneratorBasedBuilder):
"""MEmoLon is an emotion lexicons for 91 languages, each one covers eight emotional variables and comprises over 100k word entries."""

BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}_{lang}_source", version=datasets.Version(_SOURCE_VERSION), description=f"MEmoLon source schema for {lang} language", schema="source", subset_id="memolon") for lang in _LANGUAGE_MAP]

DEFAULT_CONFIG_NAME = None

def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"word": datasets.Value("string"),
"valence": datasets.Value("float32"),
"arousal": datasets.Value("float32"),
"dominance": datasets.Value("float32"),
"joy": datasets.Value("float32"),
"anger": datasets.Value("float32"),
"sadness": datasets.Value("float32"),
"fear": datasets.Value("float32"),
"disgust": datasets.Value("float32"),
}
)

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
base_path = Path(dl_manager.download_and_extract(urls))
lang = self.config.name.split("_")[1]
train_data_path = base_path / f"{lang}.tsv"

return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_data_path,
"split": "train",
},
)
]

def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
rows = []
with open(filepath, encoding='utf-8') as file:
for line in file:
rows.append(line.split("\t"))

if self.config.schema == "source":
for key, row in enumerate(rows[1:]):
example = {"word": row[0], "valence": row[1], "arousal": row[2], "dominance": row[3], "joy": row[4], "anger": row[5], "sadness": row[6], "fear": row[7], "disgust": row[8]}
yield key, example

0 comments on commit 12e42f8

Please sign in to comment.