forked from opea-project/GenAIComps
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Embedding Runtime on NeuralSpeed (opea-project#448)
* neural-speed release 0.1 * added docker compose & modified neuralspeed * updated neural-speed dynamic batching * updated neural-speed dynamic batching * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * bge done * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update doc & cleancode * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update client_multibatch.py * release update --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: chen, suyue <[email protected]>
- Loading branch information
1 parent
9b8798a
commit 0292355
Showing
11 changed files
with
377 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
# build Mosec endpoint docker image | ||
|
||
``` | ||
docker build --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy -t langchain-mosec:neuralspeed -f comps/embeddings/neural-speed/neuralspeed-docker/Dockerfile . | ||
``` | ||
|
||
# build embedding microservice docker image | ||
|
||
``` | ||
docker build --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy -t opea/embedding-langchain-mosec:neuralspeed -f comps/embeddings/neural-speed/docker/Dockerfile . | ||
``` | ||
|
||
Note: Please contact us to request model files before building images. | ||
|
||
# launch Mosec endpoint docker container | ||
|
||
``` | ||
docker run -d --name="embedding-langchain-mosec-endpoint" -p 6001:8000 langchain-mosec:neuralspeed | ||
``` | ||
|
||
# launch embedding microservice docker container | ||
|
||
``` | ||
export MOSEC_EMBEDDING_ENDPOINT=http://{mosec_embedding_host_ip}:6001 | ||
docker run -d --name="embedding-langchain-mosec-server" -e http_proxy=$http_proxy -e https_proxy=$https_proxy -p 6000:6000 --ipc=host -e MOSEC_EMBEDDING_ENDPOINT=$MOSEC_EMBEDDING_ENDPOINT opea/embedding-langchain-mosec:neuralspeed | ||
``` | ||
|
||
# run client test | ||
|
||
``` | ||
curl localhost:6000/v1/embeddings \ | ||
-X POST \ | ||
-d '{"text":"Hello, world!"}' \ | ||
-H 'Content-Type: application/json' | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
|
||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
FROM langchain/langchain:latest | ||
|
||
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \ | ||
libgl1-mesa-glx \ | ||
libjemalloc-dev \ | ||
vim | ||
|
||
RUN useradd -m -s /bin/bash user && \ | ||
mkdir -p /home/user && \ | ||
chown -R user /home/user/ | ||
|
||
USER user | ||
|
||
COPY comps /home/user/comps | ||
|
||
RUN pip install --no-cache-dir --upgrade pip && \ | ||
pip install --no-cache-dir -r /home/user/comps/embeddings/neural-speed/requirements.txt | ||
|
||
RUN pip3 install llmspec mosec msgspec httpx requests | ||
|
||
ENV PYTHONPATH=$PYTHONPATH:/home/user | ||
|
||
WORKDIR /home/user/comps/embeddings/neural-speed | ||
|
||
ENTRYPOINT ["python", "embedding_neuralspeed_svc.py"] | ||
|
22 changes: 22 additions & 0 deletions
22
comps/embeddings/neural-speed/docker/docker_compose_embedding.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
version: "3.8" | ||
|
||
services: | ||
embedding: | ||
image: opea/embedding-langchain-mosec:neuralspeed | ||
container_name: embedding-langchain-mosec-server | ||
ports: | ||
- "6000:6000" | ||
ipc: host | ||
environment: | ||
http_proxy: ${http_proxy} | ||
https_proxy: ${https_proxy} | ||
MOSEC_EMBEDDING_ENDPOINT: ${MOSEC_EMBEDDING_ENDPOINT} | ||
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY} | ||
restart: unless-stopped | ||
|
||
networks: | ||
default: | ||
driver: bridge |
83 changes: 83 additions & 0 deletions
83
comps/embeddings/neural-speed/embedding_neuralspeed_svc.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import os | ||
import time | ||
from typing import List, Optional | ||
|
||
import httpx | ||
import msgspec | ||
import requests | ||
from langchain_community.embeddings import OpenAIEmbeddings | ||
from langsmith import traceable | ||
|
||
from comps import ( | ||
EmbedDoc, | ||
ServiceType, | ||
TextDoc, | ||
opea_microservices, | ||
register_microservice, | ||
register_statistics, | ||
statistics_dict, | ||
) | ||
|
||
|
||
class MosecEmbeddings(OpenAIEmbeddings): | ||
|
||
def _get_len_safe_embeddings( | ||
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None | ||
) -> List[List[float]]: | ||
_chunk_size = chunk_size or self.chunk_size | ||
batched_embeddings: List[List[float]] = [] | ||
response = self.client.create(input=texts, **self._invocation_params) | ||
if not isinstance(response, dict): | ||
response = response.model_dump() | ||
batched_embeddings.extend(r["embedding"] for r in response["data"]) | ||
|
||
_cached_empty_embedding: Optional[List[float]] = None | ||
|
||
def empty_embedding() -> List[float]: | ||
nonlocal _cached_empty_embedding | ||
if _cached_empty_embedding is None: | ||
average_embedded = self.client.create(input="", **self._invocation_params) | ||
if not isinstance(average_embedded, dict): | ||
average_embedded = average_embedded.model_dump() | ||
_cached_empty_embedding = average_embedded["data"][0]["embedding"] | ||
return _cached_empty_embedding | ||
|
||
return [e if e is not None else empty_embedding() for e in batched_embeddings] | ||
|
||
|
||
@register_microservice( | ||
name="opea_service@embedding_mosec", | ||
service_type=ServiceType.EMBEDDING, | ||
endpoint="/v1/embeddings", | ||
host="0.0.0.0", | ||
port=6000, | ||
input_datatype=TextDoc, | ||
output_datatype=EmbedDoc, | ||
) | ||
@traceable(run_type="embedding") | ||
@register_statistics(names=["opea_service@embedding_mosec"]) | ||
def embedding(input: TextDoc) -> EmbedDoc: | ||
start = time.time() | ||
req = { | ||
"query": input.text, | ||
} | ||
request_url = MOSEC_EMBEDDING_ENDPOINT + "/inference" | ||
resp = requests.post(request_url, data=msgspec.msgpack.encode(req)) | ||
|
||
embed_vector = msgspec.msgpack.decode(resp.content)["embeddings"] | ||
res = EmbedDoc(text=req["query"][0], embedding=embed_vector) | ||
statistics_dict["opea_service@embedding_mosec"].append_latency(time.time() - start, None) | ||
return res | ||
|
||
|
||
if __name__ == "__main__": | ||
MOSEC_EMBEDDING_ENDPOINT = os.environ.get("MOSEC_EMBEDDING_ENDPOINT", "http://127.0.0.1:6001") | ||
os.environ["OPENAI_API_BASE"] = MOSEC_EMBEDDING_ENDPOINT | ||
os.environ["OPENAI_API_KEY"] = "Dummy key" | ||
MODEL_ID = os.environ.get("MODEL_ID", "BAAI/bge-base-en-v1.5") | ||
embeddings = MosecEmbeddings(model=MODEL_ID) | ||
print("NeuralSpeed Embedding Microservice Initialized.") | ||
opea_microservices["opea_service@embedding_mosec"].start() |
26 changes: 26 additions & 0 deletions
26
comps/embeddings/neural-speed/neuralspeed-docker/Dockerfile
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
From ubuntu:22.04 | ||
ARG DEBIAN_FRONTEND=noninteractive | ||
|
||
ENV GLIBC_TUNABLES glibc.cpu.x86_shstk=permissive | ||
|
||
COPY comps /root/comps | ||
COPY neural_speed-0.1.dev117+gafc0030.d20240815-cp310-cp310-linux_x86_64.whl /root/ | ||
COPY bge-base-q8.bin /root/ | ||
|
||
RUN apt update && apt install -y python3 python3-pip | ||
RUN pip3 install -r /root/comps/embeddings/neural-speed/neuralspeed-docker/requirements.txt | ||
RUN pip3 install llmspec mosec msgspec httpx requests | ||
RUN pip3 install /root/neural_speed-0.1.dev117+gafc0030.d20240815-cp310-cp310-linux_x86_64.whl | ||
|
||
RUN cd /root/ && export HF_ENDPOINT=https://hf-mirror.com && huggingface-cli download --resume-download BAAI/bge-base-en-v1.5 --local-dir /root/bge-base-en-v1.5 | ||
|
||
|
||
ENV LD_PRELOAD=/root/libstdc++.so.6 | ||
|
||
|
||
WORKDIR /root/comps/embeddings/neural-speed/neuralspeed-docker | ||
|
||
CMD ["python3", "server.py"] |
31 changes: 31 additions & 0 deletions
31
comps/embeddings/neural-speed/neuralspeed-docker/client.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import os | ||
from http import HTTPStatus | ||
|
||
import httpx | ||
import msgspec | ||
import requests | ||
|
||
input_text = "what a nice day" | ||
req = { | ||
"query": input_text, | ||
} | ||
|
||
httpx_response = httpx.post("http://127.0.0.1:6001/inference", content=msgspec.msgpack.encode(req)) | ||
|
||
requests_response = requests.post("http://127.0.0.1:6001/inference", data=msgspec.msgpack.encode(req)) | ||
|
||
MOSEC_EMBEDDING_ENDPOINT = os.environ.get("MOSEC_EMBEDDING_ENDPOINT", "http://127.0.0.1:6001") | ||
|
||
request_url = MOSEC_EMBEDDING_ENDPOINT + "/inference" | ||
print(f"request_url = {request_url}") | ||
resp_3 = requests.post(request_url, data=msgspec.msgpack.encode(req)) | ||
|
||
if httpx_response.status_code == HTTPStatus.OK and requests_response.status_code == HTTPStatus.OK: | ||
print(f"OK: \n {msgspec.msgpack.decode(httpx_response.content)}") | ||
print(f"OK: \n {msgspec.msgpack.decode(requests_response.content)}") | ||
print(f"OK: \n {msgspec.msgpack.decode(resp_3.content)}") | ||
else: | ||
print(f"err[{httpx_response.status_code}] {httpx_response.text}") |
40 changes: 40 additions & 0 deletions
40
comps/embeddings/neural-speed/neuralspeed-docker/client_multibatch.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from http import HTTPStatus | ||
from threading import Thread | ||
|
||
import httpx | ||
import msgspec | ||
|
||
req = { | ||
"query": "Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning; it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers may be recycled when a thread exits and another thread is created.", | ||
} | ||
reqs = [] | ||
BATCH = 32 | ||
for i in range(BATCH): | ||
reqs.append(msgspec.msgpack.encode(req)) | ||
|
||
|
||
def post_func(threadIdx): | ||
resp = httpx.post("http://127.0.0.1:6001/inference", content=reqs[threadIdx]) | ||
ret = f"thread {threadIdx} \n" | ||
if resp.status_code == HTTPStatus.OK: | ||
ret += f"OK: {msgspec.msgpack.decode(resp.content)['embeddings'][:16]}" | ||
else: | ||
ret += f"err[{resp.status_code}] {resp.text}" | ||
print(ret) | ||
|
||
|
||
threads = [] | ||
for i in range(BATCH): | ||
t = Thread( | ||
target=post_func, | ||
args=[ | ||
i, | ||
], | ||
) | ||
threads.append(t) | ||
|
||
for i in range(BATCH): | ||
threads[i].start() |
16 changes: 16 additions & 0 deletions
16
comps/embeddings/neural-speed/neuralspeed-docker/requirements.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
--extra-index-url https://download.pytorch.org/whl/cpu | ||
accelerate | ||
cmake | ||
datasets | ||
huggingface_hub | ||
matplotlib | ||
numpy | ||
peft | ||
protobuf<3.20 | ||
py-cpuinfo | ||
sentencepiece | ||
tiktoken | ||
torch | ||
transformers | ||
transformers_stream_generator | ||
zipfile38 |
81 changes: 81 additions & 0 deletions
81
comps/embeddings/neural-speed/neuralspeed-docker/server.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import time | ||
from typing import Any, List | ||
|
||
import numpy | ||
from mosec import Server, Worker, get_logger | ||
from mosec.mixin import TypedMsgPackMixin | ||
from msgspec import Struct | ||
from neural_speed import Model | ||
from transformers import AutoTokenizer | ||
|
||
logger = get_logger() | ||
|
||
INFERENCE_BATCH_SIZE = 32 | ||
INFERENCE_MAX_WAIT_TIME = 30 | ||
INFERENCE_WORKER_NUM = 1 | ||
INFERENCE_CONTEXT = 512 | ||
|
||
TorchModel = "/root/bge-base-en-v1.5" | ||
NS_Bin = "/root/bge-base-q8.bin" | ||
|
||
NS_Model = "bert" | ||
|
||
|
||
class Request(Struct, kw_only=True): | ||
query: str | ||
|
||
|
||
class Response(Struct, kw_only=True): | ||
embeddings: List[float] | ||
|
||
|
||
class Inference(TypedMsgPackMixin, Worker): | ||
|
||
def __init__(self): | ||
super().__init__() | ||
self.tokenizer = AutoTokenizer.from_pretrained(TorchModel) | ||
self.model = Model() | ||
self.model.init_from_bin( | ||
NS_Model, | ||
NS_Bin, | ||
batch_size=INFERENCE_BATCH_SIZE, | ||
n_ctx=INFERENCE_CONTEXT + 2, | ||
) | ||
|
||
def forward(self, data: List[Request]) -> List[Response]: | ||
batch = len(data) | ||
sequences = [d.query for d in data] | ||
inputs = self.tokenizer( | ||
sequences, | ||
padding=True, | ||
truncation=True, | ||
max_length=INFERENCE_CONTEXT, | ||
return_tensors="pt", | ||
) | ||
st = time.time() | ||
ns_outputs = self.model( | ||
**inputs, | ||
reinit=True, | ||
logits_all=True, | ||
continuous_batching=False, | ||
ignore_padding=True, | ||
) | ||
logger.info(f"batch {batch} input shape {inputs.input_ids.shape} time {time.time()-st}") | ||
ns_outputs = ns_outputs[:, 0] | ||
ns_outputs = ns_outputs / numpy.linalg.norm(ns_outputs, axis=1, keepdims=True) | ||
resps = [] | ||
for i in range(batch): | ||
resp = Response(embeddings=ns_outputs[i].tolist()) | ||
resps.append(resp) | ||
return resps | ||
|
||
|
||
if __name__ == "__main__": | ||
server = Server() | ||
server.append_worker( | ||
Inference, max_batch_size=INFERENCE_BATCH_SIZE, max_wait_time=INFERENCE_MAX_WAIT_TIME, num=INFERENCE_WORKER_NUM | ||
) | ||
server.run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
docarray[full] | ||
fastapi | ||
langchain | ||
langchain_community | ||
openai | ||
opentelemetry-api | ||
opentelemetry-exporter-otlp | ||
opentelemetry-sdk | ||
prometheus-fastapi-instrumentator | ||
shortuuid | ||
uvicorn |