Build Enterprise-grade Generative AI Applications with Microservice Architecture
This initiative empowers the development of high-quality Generative AI applications for enterprises via microservices, simplifying the scaling and deployment process for production. It abstracts away infrastructure complexities, facilitating the seamless development and deployment of Enterprise AI services.
GenAIComps provides a suite of microservices, leveraging a service composer to assemble a mega-service tailored for real-world Enterprise AI applications. All the microservices are containerized, allowing cloud native deployment. Checkout how the microservices are used in GenAIExamples.
- Install from Pypi
pip install opea-comps
- Build from Source
git clone https://github.com/opea-project/GenAIComps
cd GenAIComps
pip install -e .
Microservices
are akin to building blocks, offering the fundamental services for constructing RAG (Retrieval-Augmented Generation)
applications.
Each Microservice
is designed to perform a specific function or task within the application architecture. By breaking down the system into smaller, self-contained services, Microservices
promote modularity, flexibility, and scalability.
This modular approach allows developers to independently develop, deploy, and scale individual components of the application, making it easier to maintain and evolve over time. Additionally, Microservices
facilitate fault isolation, as issues in one service are less likely to impact the entire system.
The initially supported Microservices
are described in the below table. More Microservices
are on the way.
A Microservices
can be created by using the decorator register_microservice
. Taking the embedding microservice
as an example:
from langchain_community.embeddings import HuggingFaceHubEmbeddings
from comps import register_microservice, EmbedDoc, ServiceType, TextDoc
@register_microservice(
name="opea_service@embedding_tgi_gaudi",
service_type=ServiceType.EMBEDDING,
endpoint="/v1/embeddings",
host="0.0.0.0",
port=6000,
input_datatype=TextDoc,
output_datatype=EmbedDoc,
)
def embedding(input: TextDoc) -> EmbedDoc:
embed_vector = embeddings.embed_query(input.text)
res = EmbedDoc(text=input.text, embedding=embed_vector)
return res
A Megaservice
is a higher-level architectural construct composed of one or more Microservices
, providing the capability to assemble end-to-end applications. Unlike individual Microservices
, which focus on specific tasks or functions, a Megaservice
orchestrates multiple Microservices
to deliver a comprehensive solution.
Megaservices
encapsulate complex business logic and workflow orchestration, coordinating the interactions between various Microservices
to fulfill specific application requirements. This approach enables the creation of modular yet integrated applications, where each Microservice
contributes to the overall functionality of the Megaservice
.
Here is a simple example of building Megaservice
:
from comps import MicroService, ServiceOrchestrator
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
EMBEDDING_SERVICE_PORT = os.getenv("EMBEDDING_SERVICE_PORT", 6000)
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = os.getenv("LLM_SERVICE_PORT", 9000)
class ExampleService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
self.megaservice = ServiceOrchestrator()
def add_remote_service(self):
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVICE_HOST_IP,
port=EMBEDDING_SERVICE_PORT,
endpoint="/v1/embeddings",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
llm = MicroService(
name="llm",
host=LLM_SERVICE_HOST_IP,
port=LLM_SERVICE_PORT,
endpoint="/v1/chat/completions",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(embedding).add(llm)
self.megaservice.flow_to(embedding, llm)
Welcome to the OPEA open-source community! We are thrilled to have you here and excited about the potential contributions you can bring to the OPEA platform. Whether you are fixing bugs, adding new GenAI components, improving documentation, or sharing your unique use cases, your contributions are invaluable.
Together, we can make OPEA the go-to platform for enterprise AI solutions. Let's work together to push the boundaries of what's possible and create a future where AI is accessible, efficient, and impactful for everyone.
Please check the Contributing guidelines for a detailed guide on how to contribute a GenAI example and all the ways you can contribute!
Thank you for being a part of this journey. We can't wait to see what we can achieve together!