Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add PowerSGDCompressor #27 #47

Open
wants to merge 13 commits into
base: master
Choose a base branch
from
182 changes: 101 additions & 81 deletions autodist/kernel/synchronization/compressor.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,13 +13,12 @@
# limitations under the License.

"""Gradient Compressors for All-Reduce."""
import copy
from abc import ABC, abstractmethod
from tensorflow.python.framework import dtypes
from tensorflow.python.framework.ops import Tensor
from tensorflow.python.ops import collective_ops, math_ops

#from tensorflow.python.ops import array_ops, collective_ops, linalg_ops, math_ops, random_ops
#from autodist.kernel.synchronization.collective_key import get_collective_keys
from tensorflow.python.ops import collective_ops, math_ops, random_ops, array_ops, linalg_ops
from autodist.kernel.synchronization.collective_key import get_collective_keys
#from autodist.utils import logging


Expand Down Expand Up @@ -205,80 +204,101 @@ class HorovodCompressorEF(CompressorEF, HorovodCompressor): # This works becaus
"""Horovod's Compression but with Error Feedback."""


# class PowerSGDCompressor(CompressorEF):
# """An implementation of the PowerSGD compression algorithm (arxiv.org/abs/1905.13727)."""

# def __init__(self, var_op_name, rank=1):
# self.rank = rank
# self.og_shape, self.ndims, self.new_shape, self.compressor = None, None, None, None
# super().__init__(var_op_name)

# def reduce(self, tensor: Tensor, conf: CollectiveOpsConfig):
# """
# Compress, reduce, and decompress a given tensor.

# Args:
# tensor (Tensor): the Tensor to reduce.
# conf (CollectiveOpsConfig): the config for Collective Ops.

# Returns:
# Reduced Tensor
# """
# if self.og_shape is None:
# self.og_shape = tensor.shape
# self.ndims = len(self.og_shape)

# # Check if rank 1 tensor (this shouldn't be called with sparse tensors)
# # Just reduce it if it is, no need to compress
# if self._is_1d:
# return self._all_reduce(tensor, conf)

# logging.info(f"Compressing tensor {tensor.name} (var {self.var_op_name}) with shape {tensor.shape}")
# if self.ndims > 2:
# tensor = array_ops.reshape(tensor, [self.og_shape[0], -1])

# if self.compressor is None:
# self.new_shape = array_ops.shape_v2(tensor)
# self.compressor = random_ops.random_normal([self.new_shape[1], self.rank])

# if self.error is not None:
# tensor += self.error

# compressed_tensor = self._compress(tensor)
# self.error = tensor - self._decompress(compressed_tensor)

# # all reduce mean p
# reduced = self._all_reduce(compressed_tensor, conf)
# reduced = self._orthogonalize(reduced)

# # update compressor
# self.compressor = math_ops.matmul(tensor, reduced, transpose_a=True)
# conf.instance_key = get_collective_keys().get_instance_key(self.var_op_name + "/compressor")
# self.compressor = self._all_reduce(self.compressor, conf)
# return array_ops.reshape(self._decompress(reduced), self.og_shape) \
# if self.ndims > 2 else self._decompress(reduced)

# def _compress(self, tensor: Tensor):
# return math_ops.matmul(tensor, self.compressor)

# def _decompress(self, compressed_tensor: Tensor):
# return math_ops.matmul(compressed_tensor, self.compressor, transpose_b=True)

# @property
# def _is_1d(self):
# return self.ndims <= 1 or (
# self.ndims == 2 and any(d == 1 for d in self.og_shape)
# )

# @staticmethod
# def _orthogonalize(matrix):
# _, m = matrix.shape
# for i in range(m):
# v = matrix[:, i]
# v /= linalg_ops.norm_v2(v)
# v = array_ops.expand_dims_v2(v, 1)

# begin, rest = matrix[:, :i], matrix[:, (i + 1):]
# rest -= math_ops.matmul(v, rest, transpose_a=True) * v
# matrix = array_ops.concat([begin, v, rest], 1)
# return matrix
class PowerSGDCompressor(CompressorEF):
sonicxml marked this conversation as resolved.
Show resolved Hide resolved
"""An implementation of the PowerSGD compression algorithm (arxiv.org/abs/1905.13727)."""

def __init__(self, var_op_name, rank=1):
self.rank = rank
self.og_shape, self.ndims = None, None
self.compressor, self.compressor_conf = None, None # compressor is the Q in paper
self.var_op_name = var_op_name
sonicxml marked this conversation as resolved.
Show resolved Hide resolved
super().__init__(var_op_name)

def reduce(self, tensor: Tensor, conf: CollectiveOpsConfig):
"""
Compress, reduce, and decompress a given tensor.

Args:
tensor (Tensor): the Tensor to reduce.
conf (CollectiveOpsConfig): the config for Collective Ops.

Returns:
Reduced Tensor
"""
if self.og_shape is None:
self.og_shape = tensor.shape
self.ndims = len(self.og_shape)

# rank <= 1
if self.ndims <= 1 or (self.ndims == 2 and any([d == 1 for d in self.og_shape])):
return self._all_reduce(tensor, conf)

# compressor init
if self.compressor is None:
self.compressor = random_ops.random_normal([array_ops.shape_v2(tensor)[1], self.rank], seed=1000)

self.compressor_conf = copy.copy(conf)
self.conf.instance_key = get_collective_keys().get_instance_key(self.var_op_name + '/compressor')

if self.error is not None:
tensor += self.error

compressed_tensor = self._compress(tensor)
self.error = tensor - self._decompress(compressed_tensor)

reduced_tensor = self._all_reduce(compressed_tensor, conf)

orthonormal_reduced_tensor = self._modified_gram_schmidt(reduced_tensor)

self.compressor = math_ops.matmul(tensor, orthonormal_reduced_tensor, transpose_a=True) # mxn * nxr => mxr

# all reduce mean compressor
self.compressor = self._all_reduce(self.compressor, self.compressor_conf)

return self._decompress(orthonormal_reduced_tensor)

def _compress(self, tensor: Tensor):
"""
Compress a given tensor.

Args:
tensor (Tensor): the Tensor to compress.

Returns:
Tensor
"""
return math_ops.matmul(tensor, self.compressor) # nxm * mxr => nxr

def _decompress(self, compressed_tensor: Tensor):
"""
Decompress a given tensor.

Args:
compressed_tensor (Tensor): the Tensor to decompress.

Returns:
Tensor, Context
"""
return math_ops.matmul(compressed_tensor, self.compressor, transpose_b=True) # nxr * rxm => nxm

@staticmethod
def _modified_gram_schmidt(matrix):
"""
Apply modified Gram-Schmidt procedure to orthogonalize a matrix in columns.

Args:
matrix (Tensor): the Tensor to orthogonalize.

Returns:
matrix (Tensor)
"""
_, m = matrix.shape

for i in range(m):
v = matrix[:, i:(i + 1)]
v /= linalg_ops.norm_v2(v, axis=0)

rest = matrix[:, (i + 1):]
rest -= math_ops.reduce_sum_v1(v * rest, axis=0, keepdims=True) * v
matrix = array_ops.concat([matrix[:, :i], v, rest], axis=1)
return matrix