Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: bump dependencies #3958

Merged
merged 10 commits into from
Jul 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -25,22 +25,22 @@ UUIDs = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
cohomCalg_jll = "5558cf25-a90e-53b0-b813-cadaa3ae7ade"

[compat]
AbstractAlgebra = "0.41.3"
AlgebraicSolving = "0.5.0"
AbstractAlgebra = "0.42.0"
AlgebraicSolving = "0.5.1"
Distributed = "1.6"
GAP = "0.10.2"
Hecke = "0.32.0"
Hecke = "0.33.0"
JSON = "^0.20, ^0.21"
JSON3 = "1.13.2"
LazyArtifacts = "1.6"
Markdown = "1.6"
Nemo = "0.45.5"
Nemo = "0.46.0"
Pkg = "1.6"
Polymake = "0.11.19"
Random = "1.6"
RandomExtensions = "0.4.3"
Serialization = "1.6"
Singular = "0.23.1"
Singular = "0.23.4"
TOPCOM_jll = "0.17.8"
UUIDs = "1.6"
cohomCalg_jll = "0.32.0"
Expand Down
4 changes: 2 additions & 2 deletions docs/src/Rings/rational.md
Original file line number Diff line number Diff line change
Expand Up @@ -273,7 +273,7 @@ ERROR: DivideError: integer division error
Test if ``a`` is an ``n``-th power. If so, return ```true``` and the root,
```false``` and any rational otherwise.

* `is_power(a::QQFieldElem) -> Int, QQFieldElem`
* `is_perfect_power_with_data(a::QQFieldElem) -> Int, QQFieldElem`

Find the largest ``n`` such that ``a`` is an ``n``-th power. Return ``n`` and the root.

Expand All @@ -288,7 +288,7 @@ julia> is_power(QQ(8), 3)
julia> is_power(QQ(8), 2)
(false, 8)

julia> is_power(QQ(9//16))
julia> is_perfect_power_with_data(QQ(9//16))
(2, 3//4)

julia> root(QQ(25//9), 2)
Expand Down
2 changes: 1 addition & 1 deletion experimental/IntersectionTheory/src/blowup.jl
Original file line number Diff line number Diff line change
Expand Up @@ -169,7 +169,7 @@ function present_finite_extension_ring(F::Oscar.AffAlgHom)
y -= q * gensB_lift[i]
end; ans)

FM = FreeModule(R, g)
FM = free_module(R, g)
gB = elem_type(FM)[FM(push!([j == i ? R(1) : R() for j in 1:g-1], -gensB_lift[i])) for i in 1:g-1]
gJ = elem_type(FM)[FM([j==i ? x : R() for j in 1:g]) for x in gens(J) for i in 1:g]
U = vcat(gB, gJ)
Expand Down
2 changes: 1 addition & 1 deletion experimental/SymmetricIntersections/src/representations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1062,7 +1062,7 @@ function _has_pfr(G::Oscar.GAPGroup, dim::Int)
G_gap = G.X
f_gap = GG.EpimorphismSchurCover(G_gap)::GapObj
H_gap = GG.Source(f_gap)::GapObj
n, p = is_power(GG.Size(H_gap))::Tuple{Int, Int}
n, p = is_perfect_power_with_data(GG.Size(H_gap))::Tuple{Int, Int}
if is_prime(p)
fff_gap = GG.EpimorphismPGroup(H_gap, p)::GapObj
E_gap = fff_gap(H_gap)::GapObj
Expand Down
2 changes: 1 addition & 1 deletion src/Groups/matrices/linear_isconjugate.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ is_semisimple(x::MatrixGroupElem{T}) where T <: FinFieldElem = is_coprime(order(

Return whether `x` is unipotent, i.e. its order is a power of the characteristic of its base ring.
"""
is_unipotent(x::MatrixGroupElem{T}) where T <: FinFieldElem = isone(x) || is_power(order(Int, x))[2]==Int(characteristic(x.parent.ring))
is_unipotent(x::MatrixGroupElem{T}) where T <: FinFieldElem = isone(x) || is_perfect_power_with_data(order(Int, x))[2]==Int(characteristic(x.parent.ring))



Expand Down
4 changes: 2 additions & 2 deletions src/Groups/matrices/stuff_field_gen.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,14 +8,14 @@

# changes the base ring of a polynomial ring into fqPolyRepFieldElem
function _change_type(f::PolyRingElem{T}) where T <: FinFieldElem
e,p = is_power(order(base_ring(f)))
e,p = is_perfect_power_with_data(order(base_ring(f)))

Check warning on line 11 in src/Groups/matrices/stuff_field_gen.jl

View check run for this annotation

Codecov / codecov/patch

src/Groups/matrices/stuff_field_gen.jl#L11

Added line #L11 was not covered by tests
F = GF(Int(p),Int(e))
t = polynomial_ring(F,"t"; cached=false)[2]
return sum([t^i*F(lift(coeff(f,i))) for i in 0:degree(f)])
end

function _change_type(f::PolyRingElem{<: FqFieldElem})
e,p = is_power(order(base_ring(f)))
e,p = is_perfect_power_with_data(order(base_ring(f)))
F = GF(Int(p),Int(e))
t = polynomial_ring(F,"t"; cached=false)[2]
return sum([t^i*F(lift(ZZ, coeff(f,i))) for i in 0:degree(f)])
Expand Down
2 changes: 1 addition & 1 deletion src/Modules/UngradedModules/FreeMod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ free_module(R::MPolyLocRing, p::Int, name::VarName = :e; cached::Bool = false) =
free_module(R::MPolyQuoLocRing, p::Int, name::VarName = :e; cached::Bool = false) = FreeMod(R, p, name, cached = cached)

#=XXX this cannot be as it is inherently ambiguous
- FreeModule(R, n)
- free_module(R, n)
- direct sum of rings, ie. a ring
- set of n-th powers of R
thus the "category" needs to be set explicitly
Expand Down
2 changes: 1 addition & 1 deletion src/NumberTheory/GaloisGrp/GaloisGrp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2172,7 +2172,7 @@ function isinteger(GC::GaloisCtx{Hecke.qAdicRootCtx}, B::BoundRingElem{ZZRingEle
p = GC.C.p
if e.length<2
l = coeff(e, 0)
lz = lift(l)
lz = lift(ZZ, l)
lz = Hecke.mod_sym(lz, ZZRingElem(p)^precision(l))
if abs(lz) < value(B)
return true, lz
Expand Down
2 changes: 1 addition & 1 deletion src/NumberTheory/GaloisGrp/Qt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -652,7 +652,7 @@ function isinteger(G::GaloisCtx, B::BoundRingElem{Tuple{ZZRingElem, Int, QQField

if c.length < 2 || all(x->iszero(coeff(c, x)), 1:c.length-1)
cc = coeff(c, 0)
l = Hecke.mod_sym(lift(cc), pr^precision(cc))
l = Hecke.mod_sym(lift(ZZ, cc), pr^precision(cc))
if abs(l) > pr^p[1]
return false, x
end
Expand Down
2 changes: 1 addition & 1 deletion test/Groups/matrixgroups.jl
Original file line number Diff line number Diff line change
Expand Up @@ -657,7 +657,7 @@ end
@test parent(s)==G
@test parent(u)==G
@test is_coprime(order(s),3)
@test isone(u) || is_power(order(u))[2]==3
@test isone(u) || is_perfect_power_with_data(order(u))[2]==3
@test is_semisimple(s)
@test is_unipotent(u)
@test s*u==G(x)
Expand Down
4 changes: 2 additions & 2 deletions test/Groups/subgroups_and_cosets.jl
Original file line number Diff line number Diff line change
Expand Up @@ -352,12 +352,12 @@ end
Lo = [order(l) for l in L]
@test length(Lo)==length(factor(order(G)))
@test prod(Lo) == order(G)
@test [is_prime(is_power(l)[2]) for l in Lo] == [1 for i in 1:length(L)]
@test [is_prime(is_perfect_power_with_data(l)[2]) for l in Lo] == [1 for i in 1:length(L)]
L = complement_system(G)
Lo = [index(G,l) for l in L]
@test length(Lo)==length(factor(order(G)))
@test prod(Lo) == order(G)
@test [is_prime(is_power(l)[2]) for l in Lo] == [1 for i in 1:length(L)]
@test [is_prime(is_perfect_power_with_data(l)[2]) for l in Lo] == [1 for i in 1:length(L)]

L = hall_system(symmetric_group(4))
@test is_subset(L[1], symmetric_group(4))
Expand Down
2 changes: 1 addition & 1 deletion test/book/cornerstones/groups/auxiliary_code/main.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import Pkg
Pkg.add(name="GenericCharacterTables", version=v"0.2"; io=devnull)
Pkg.add(name="GenericCharacterTables", version="0.2"; io=devnull)
using GenericCharacterTables
# for nicer printing
using GenericCharacterTables: ParameterException
2 changes: 1 addition & 1 deletion test/book/cornerstones/number-theory/galoismod.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -88,4 +88,4 @@ julia> fl = is_free(M)
false

julia> defining_polynomial(K)
x^8 + 735*x^6 + 11340*x^4 + 33075*x^2 + 11025
x^8 + 105*x^6 + 3465*x^4 + 44100*x^2 + 176400
Loading