-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5144 from openjournals/joss.06310
Merging automatically
- Loading branch information
Showing
3 changed files
with
1,085 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,337 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20240318T122733-baf0b0b00c8dd7f2a8dbe7df855935119f5fcd59</doi_batch_id> | ||
<timestamp>20240318122733</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>03</month> | ||
<year>2024</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>9</volume> | ||
</journal_volume> | ||
<issue>95</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>Imbalance: A comprehensive multi-interface Julia | ||
toolbox to address class imbalance</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Essam</given_name> | ||
<surname>Wisam</surname> | ||
<ORCID>https://orcid.org/0009-0009-1198-7166</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Anthony</given_name> | ||
<surname>Blaom</surname> | ||
<ORCID>https://orcid.org/0000-0001-6689-886X</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>03</month> | ||
<day>18</day> | ||
<year>2024</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>6310</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.06310</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10823254</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6310</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.06310</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.06310</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06310.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="julia"> | ||
<article_title>Julia: A fresh approach to numerical | ||
computing</article_title> | ||
<author>Bezanson</author> | ||
<journal_title>SIAM Review</journal_title> | ||
<issue>1</issue> | ||
<volume>59</volume> | ||
<doi>10.1137/141000671</doi> | ||
<cYear>2017</cYear> | ||
<unstructured_citation>Bezanson, J., Edelman, A., Karpinski, | ||
S., & Shah, V. B. (2017). Julia: A fresh approach to numerical | ||
computing. SIAM Review, 59(1), 65–98. | ||
https://doi.org/10.1137/141000671</unstructured_citation> | ||
</citation> | ||
<citation key="Cunningham:2008"> | ||
<article_title>Supervised learning</article_title> | ||
<author>Cunningham</author> | ||
<journal_title>Machine learning techniques for multimedia: | ||
Case studies on organization and retrieval</journal_title> | ||
<doi>10.1007/978-3-540-75171-7_2</doi> | ||
<isbn>978-3-540-75171-7</isbn> | ||
<cYear>2008</cYear> | ||
<unstructured_citation>Cunningham, P., Cord, M., & | ||
Delany, S. J. (2008). Supervised learning. In M. Cord & P. | ||
Cunningham (Eds.), Machine learning techniques for multimedia: Case | ||
studies on organization and retrieval (pp. 21–49). Springer Berlin | ||
Heidelberg. | ||
https://doi.org/10.1007/978-3-540-75171-7_2</unstructured_citation> | ||
</citation> | ||
<citation key="Ali:2015"> | ||
<article_title>Classification with class imbalance problem: | ||
A review</article_title> | ||
<author>Ali</author> | ||
<journal_title>Soft computing models in industrial and | ||
environmental applications</journal_title> | ||
<cYear>2015</cYear> | ||
<unstructured_citation>Ali, A., Shamsuddin, S. M. Hj., & | ||
Ralescu, A. L. (2015). Classification with class imbalance problem: A | ||
review. Soft Computing Models in Industrial and Environmental | ||
Applications. | ||
https://api.semanticscholar.org/CorpusID:26644563</unstructured_citation> | ||
</citation> | ||
<citation key="Zeng:2016"> | ||
<article_title>Effective prediction of three common diseases | ||
by combining SMOTE with tomek links technique for imbalanced medical | ||
data</article_title> | ||
<author>Zeng</author> | ||
<journal_title>2016 IEEE International Conference of Online | ||
Analysis and Computing Science (ICOACS)</journal_title> | ||
<doi>10.1109/ICOACS.2016.7563084</doi> | ||
<cYear>2016</cYear> | ||
<unstructured_citation>Zeng, M., Zou, B., Wei, F., Liu, X., | ||
& Wang, L. (2016). Effective prediction of three common diseases by | ||
combining SMOTE with tomek links technique for imbalanced medical data. | ||
2016 IEEE International Conference of Online Analysis and Computing | ||
Science (ICOACS), 225–228. | ||
https://doi.org/10.1109/ICOACS.2016.7563084</unstructured_citation> | ||
</citation> | ||
<citation key="Liu:2009"> | ||
<article_title>Exploratory undersampling for class-imbalance | ||
learning</article_title> | ||
<author>Liu</author> | ||
<journal_title>IEEE Transactions on Systems, Man, and | ||
Cybernetics, Part B (Cybernetics)</journal_title> | ||
<volume>39</volume> | ||
<doi>10.1109/TSMCB.2008.2007853</doi> | ||
<cYear>2009</cYear> | ||
<unstructured_citation>Liu, X.-Y., Wu, J., & Zhou, Z.-H. | ||
(2009). Exploratory undersampling for class-imbalance learning. IEEE | ||
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39, | ||
539–550. | ||
https://doi.org/10.1109/TSMCB.2008.2007853</unstructured_citation> | ||
</citation> | ||
<citation key="Picek:2018"> | ||
<article_title>The curse of class imbalance and conflicting | ||
metrics with machine learning for side-channel | ||
evaluations</article_title> | ||
<author>Picek</author> | ||
<journal_title>IACR Trans. Cryptogr. Hardw. Embed. | ||
Syst.</journal_title> | ||
<volume>2019</volume> | ||
<doi>10.13154/tches.v2019.i1.209-237</doi> | ||
<cYear>2018</cYear> | ||
<unstructured_citation>Picek, S., Heuser, A., Jović, A., | ||
Bhasin, S., & Regazzoni, F. (2018). The curse of class imbalance and | ||
conflicting metrics with machine learning for side-channel evaluations. | ||
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019, 209–237. | ||
https://doi.org/10.13154/tches.v2019.i1.209-237</unstructured_citation> | ||
</citation> | ||
<citation key="Kubt:1997"> | ||
<article_title>Addressing the curse of imbalanced training | ||
sets: One-sided selection</article_title> | ||
<author>Kubát</author> | ||
<journal_title>International conference on machine | ||
learning</journal_title> | ||
<cYear>1997</cYear> | ||
<unstructured_citation>Kubát, M., & Matwin, S. (1997). | ||
Addressing the curse of imbalanced training sets: One-sided selection. | ||
International Conference on Machine Learning. | ||
https://api.semanticscholar.org/CorpusID:18370956</unstructured_citation> | ||
</citation> | ||
<citation key="Chawla:2002"> | ||
<article_title>SMOTE: Synthetic minority over-sampling | ||
technique</article_title> | ||
<author>Chawla</author> | ||
<journal_title>ArXiv</journal_title> | ||
<volume>abs/1106.1813</volume> | ||
<doi>10.1613/jair.953</doi> | ||
<cYear>2002</cYear> | ||
<unstructured_citation>Chawla, N., Bowyer, K., Hall, L. O., | ||
& Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling | ||
technique. ArXiv, abs/1106.1813. | ||
https://doi.org/10.1613/jair.953</unstructured_citation> | ||
</citation> | ||
<citation key="Han:2005"> | ||
<article_title>Borderline-SMOTE: A new over-sampling method | ||
in imbalanced data sets learning</article_title> | ||
<author>Han</author> | ||
<journal_title>International conference on intelligent | ||
computing</journal_title> | ||
<doi>10.1007/11538059_91</doi> | ||
<cYear>2005</cYear> | ||
<unstructured_citation>Han, H., Wang, W., & Mao, B. | ||
(2005). Borderline-SMOTE: A new over-sampling method in imbalanced data | ||
sets learning. International Conference on Intelligent Computing. | ||
https://doi.org/10.1007/11538059_91</unstructured_citation> | ||
</citation> | ||
<citation key="Zhang:2014"> | ||
<article_title>RWO-sampling: A random walk over-sampling | ||
approach to imbalanced data classification</article_title> | ||
<author>Zhang</author> | ||
<journal_title>Inf. Fusion</journal_title> | ||
<volume>20</volume> | ||
<doi>10.1016/j.inffus.2013.12.003</doi> | ||
<cYear>2014</cYear> | ||
<unstructured_citation>Zhang, H., & Li, M. (2014). | ||
RWO-sampling: A random walk over-sampling approach to imbalanced data | ||
classification. Inf. Fusion, 20, 99–116. | ||
https://doi.org/10.1016/j.inffus.2013.12.003</unstructured_citation> | ||
</citation> | ||
<citation key="Menardi:2012"> | ||
<article_title>Training and assessing classification rules | ||
with imbalanced data</article_title> | ||
<author>Menardi</author> | ||
<journal_title>Data Mining and Knowledge | ||
Discovery</journal_title> | ||
<volume>28</volume> | ||
<doi>10.1007/s10618-012-0295-5</doi> | ||
<cYear>2012</cYear> | ||
<unstructured_citation>Menardi, G., & Torelli, N. | ||
(2012). Training and assessing classification rules with imbalanced | ||
data. Data Mining and Knowledge Discovery, 28, 92–122. | ||
https://doi.org/10.1007/s10618-012-0295-5</unstructured_citation> | ||
</citation> | ||
<citation key="Lin:2016"> | ||
<article_title>Clustering-based undersampling in | ||
class-imbalanced data</article_title> | ||
<author>Lin</author> | ||
<journal_title>Inf. Sci.</journal_title> | ||
<volume>409</volume> | ||
<doi>10.1016/j.ins.2017.05.008</doi> | ||
<cYear>2016</cYear> | ||
<unstructured_citation>Lin, W.-C., Tsai, C.-F., Hu, Y.-H., | ||
& Jhang, J.-S. (2016). Clustering-based undersampling in | ||
class-imbalanced data. Inf. Sci., 409, 17–26. | ||
https://doi.org/10.1016/j.ins.2017.05.008</unstructured_citation> | ||
</citation> | ||
<citation key="Hart:1968"> | ||
<article_title>The condensed nearest neighbor rule | ||
(corresp.)</article_title> | ||
<author>Hart</author> | ||
<journal_title>IEEE Trans. Inf. Theory</journal_title> | ||
<volume>14</volume> | ||
<doi>10.1109/TIT.1968.1054155</doi> | ||
<cYear>1968</cYear> | ||
<unstructured_citation>Hart, P. E. (1968). The condensed | ||
nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory, 14, 515–516. | ||
https://doi.org/10.1109/TIT.1968.1054155</unstructured_citation> | ||
</citation> | ||
<citation key="Lematre:2016"> | ||
<article_title>Imbalanced-learn: A Python toolbox to tackle | ||
the curse of imbalanced datasets in machine learning</article_title> | ||
<author>Lemaître</author> | ||
<journal_title>ArXiv</journal_title> | ||
<volume>abs/1609.06570</volume> | ||
<cYear>2016</cYear> | ||
<unstructured_citation>Lemaître, G., Nogueira, F., & | ||
Aridas, C. K. (2016). Imbalanced-learn: A Python toolbox to tackle the | ||
curse of imbalanced datasets in machine learning. ArXiv, abs/1609.06570. | ||
https://api.semanticscholar.org/CorpusID:1426815</unstructured_citation> | ||
</citation> | ||
<citation key="Kovács:2019"> | ||
<article_title>Smote-variants: A Python implementation of 85 | ||
minority oversampling techniques</article_title> | ||
<author>Kovács</author> | ||
<journal_title>Neurocomputing</journal_title> | ||
<volume>366</volume> | ||
<doi>10.1016/j.neucom.2019.06.100</doi> | ||
<issn>0925-2312</issn> | ||
<cYear>2019</cYear> | ||
<unstructured_citation>Kovács, G. (2019). Smote-variants: A | ||
Python implementation of 85 minority oversampling techniques. | ||
Neurocomputing, 366, 352–354. | ||
https://doi.org/10.1016/j.neucom.2019.06.100</unstructured_citation> | ||
</citation> | ||
<citation key="DataCamp:2023"> | ||
<article_title>The rise of Julia</article_title> | ||
<author>Tuychiev</author> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Tuychiev, B. (2023). The rise of | ||
Julia. | ||
https://www.datacamp.com/blog/the-rise-of-julia-is-it-worth-learning-in-2022</unstructured_citation> | ||
</citation> | ||
<citation key="Fernández:2013"> | ||
<article_title>Analysing the classification of imbalanced | ||
data-sets with multiple classes: Binarization techniques and ad-hoc | ||
approaches</article_title> | ||
<author>Fernández</author> | ||
<journal_title>Knowl. Based Syst.</journal_title> | ||
<volume>42</volume> | ||
<doi>10.1016/J.KNOSYS.2013.01.018</doi> | ||
<cYear>2013</cYear> | ||
<unstructured_citation>Fernández, A., López, V., Galar, M., | ||
Jesús, M. J. del, & Herrera, F. (2013). Analysing the classification | ||
of imbalanced data-sets with multiple classes: Binarization techniques | ||
and ad-hoc approaches. Knowl. Based Syst., 42, 97–110. | ||
https://doi.org/10.1016/J.KNOSYS.2013.01.018</unstructured_citation> | ||
</citation> | ||
<citation key="Blaom2020MLJAJ"> | ||
<article_title>MLJ: A julia package for composable machine | ||
learning</article_title> | ||
<author>Blaom</author> | ||
<journal_title>J. Open Source Softw.</journal_title> | ||
<volume>5</volume> | ||
<doi>10.21105/joss.02704</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Blaom, A. D., Király, F. J., Lienart, | ||
T., Simillides, Y., Arenas, D., & Vollmer, S. J. (2020). MLJ: A | ||
julia package for composable machine learning. J. Open Source Softw., 5, | ||
2704. https://doi.org/10.21105/joss.02704</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
Oops, something went wrong.