Skip to content

Commit

Permalink
Merge pull request #5144 from openjournals/joss.06310
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Mar 18, 2024
2 parents 6470a24 + 728c748 commit e3f508c
Show file tree
Hide file tree
Showing 3 changed files with 1,085 additions and 0 deletions.
337 changes: 337 additions & 0 deletions joss.06310/10.21105.joss.06310.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,337 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240318T122733-baf0b0b00c8dd7f2a8dbe7df855935119f5fcd59</doi_batch_id>
<timestamp>20240318122733</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>03</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>95</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Imbalance: A comprehensive multi-interface Julia
toolbox to address class imbalance</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Essam</given_name>
<surname>Wisam</surname>
<ORCID>https://orcid.org/0009-0009-1198-7166</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Anthony</given_name>
<surname>Blaom</surname>
<ORCID>https://orcid.org/0000-0001-6689-886X</ORCID>
</person_name>
</contributors>
<publication_date>
<month>03</month>
<day>18</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6310</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06310</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10823254</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6310</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06310</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06310</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06310.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="julia">
<article_title>Julia: A fresh approach to numerical
computing</article_title>
<author>Bezanson</author>
<journal_title>SIAM Review</journal_title>
<issue>1</issue>
<volume>59</volume>
<doi>10.1137/141000671</doi>
<cYear>2017</cYear>
<unstructured_citation>Bezanson, J., Edelman, A., Karpinski,
S., &amp; Shah, V. B. (2017). Julia: A fresh approach to numerical
computing. SIAM Review, 59(1), 65–98.
https://doi.org/10.1137/141000671</unstructured_citation>
</citation>
<citation key="Cunningham:2008">
<article_title>Supervised learning</article_title>
<author>Cunningham</author>
<journal_title>Machine learning techniques for multimedia:
Case studies on organization and retrieval</journal_title>
<doi>10.1007/978-3-540-75171-7_2</doi>
<isbn>978-3-540-75171-7</isbn>
<cYear>2008</cYear>
<unstructured_citation>Cunningham, P., Cord, M., &amp;
Delany, S. J. (2008). Supervised learning. In M. Cord &amp; P.
Cunningham (Eds.), Machine learning techniques for multimedia: Case
studies on organization and retrieval (pp. 21–49). Springer Berlin
Heidelberg.
https://doi.org/10.1007/978-3-540-75171-7_2</unstructured_citation>
</citation>
<citation key="Ali:2015">
<article_title>Classification with class imbalance problem:
A review</article_title>
<author>Ali</author>
<journal_title>Soft computing models in industrial and
environmental applications</journal_title>
<cYear>2015</cYear>
<unstructured_citation>Ali, A., Shamsuddin, S. M. Hj., &amp;
Ralescu, A. L. (2015). Classification with class imbalance problem: A
review. Soft Computing Models in Industrial and Environmental
Applications.
https://api.semanticscholar.org/CorpusID:26644563</unstructured_citation>
</citation>
<citation key="Zeng:2016">
<article_title>Effective prediction of three common diseases
by combining SMOTE with tomek links technique for imbalanced medical
data</article_title>
<author>Zeng</author>
<journal_title>2016 IEEE International Conference of Online
Analysis and Computing Science (ICOACS)</journal_title>
<doi>10.1109/ICOACS.2016.7563084</doi>
<cYear>2016</cYear>
<unstructured_citation>Zeng, M., Zou, B., Wei, F., Liu, X.,
&amp; Wang, L. (2016). Effective prediction of three common diseases by
combining SMOTE with tomek links technique for imbalanced medical data.
2016 IEEE International Conference of Online Analysis and Computing
Science (ICOACS), 225–228.
https://doi.org/10.1109/ICOACS.2016.7563084</unstructured_citation>
</citation>
<citation key="Liu:2009">
<article_title>Exploratory undersampling for class-imbalance
learning</article_title>
<author>Liu</author>
<journal_title>IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics)</journal_title>
<volume>39</volume>
<doi>10.1109/TSMCB.2008.2007853</doi>
<cYear>2009</cYear>
<unstructured_citation>Liu, X.-Y., Wu, J., &amp; Zhou, Z.-H.
(2009). Exploratory undersampling for class-imbalance learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39,
539–550.
https://doi.org/10.1109/TSMCB.2008.2007853</unstructured_citation>
</citation>
<citation key="Picek:2018">
<article_title>The curse of class imbalance and conflicting
metrics with machine learning for side-channel
evaluations</article_title>
<author>Picek</author>
<journal_title>IACR Trans. Cryptogr. Hardw. Embed.
Syst.</journal_title>
<volume>2019</volume>
<doi>10.13154/tches.v2019.i1.209-237</doi>
<cYear>2018</cYear>
<unstructured_citation>Picek, S., Heuser, A., Jović, A.,
Bhasin, S., &amp; Regazzoni, F. (2018). The curse of class imbalance and
conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019, 209–237.
https://doi.org/10.13154/tches.v2019.i1.209-237</unstructured_citation>
</citation>
<citation key="Kubt:1997">
<article_title>Addressing the curse of imbalanced training
sets: One-sided selection</article_title>
<author>Kubát</author>
<journal_title>International conference on machine
learning</journal_title>
<cYear>1997</cYear>
<unstructured_citation>Kubát, M., &amp; Matwin, S. (1997).
Addressing the curse of imbalanced training sets: One-sided selection.
International Conference on Machine Learning.
https://api.semanticscholar.org/CorpusID:18370956</unstructured_citation>
</citation>
<citation key="Chawla:2002">
<article_title>SMOTE: Synthetic minority over-sampling
technique</article_title>
<author>Chawla</author>
<journal_title>ArXiv</journal_title>
<volume>abs/1106.1813</volume>
<doi>10.1613/jair.953</doi>
<cYear>2002</cYear>
<unstructured_citation>Chawla, N., Bowyer, K., Hall, L. O.,
&amp; Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling
technique. ArXiv, abs/1106.1813.
https://doi.org/10.1613/jair.953</unstructured_citation>
</citation>
<citation key="Han:2005">
<article_title>Borderline-SMOTE: A new over-sampling method
in imbalanced data sets learning</article_title>
<author>Han</author>
<journal_title>International conference on intelligent
computing</journal_title>
<doi>10.1007/11538059_91</doi>
<cYear>2005</cYear>
<unstructured_citation>Han, H., Wang, W., &amp; Mao, B.
(2005). Borderline-SMOTE: A new over-sampling method in imbalanced data
sets learning. International Conference on Intelligent Computing.
https://doi.org/10.1007/11538059_91</unstructured_citation>
</citation>
<citation key="Zhang:2014">
<article_title>RWO-sampling: A random walk over-sampling
approach to imbalanced data classification</article_title>
<author>Zhang</author>
<journal_title>Inf. Fusion</journal_title>
<volume>20</volume>
<doi>10.1016/j.inffus.2013.12.003</doi>
<cYear>2014</cYear>
<unstructured_citation>Zhang, H., &amp; Li, M. (2014).
RWO-sampling: A random walk over-sampling approach to imbalanced data
classification. Inf. Fusion, 20, 99–116.
https://doi.org/10.1016/j.inffus.2013.12.003</unstructured_citation>
</citation>
<citation key="Menardi:2012">
<article_title>Training and assessing classification rules
with imbalanced data</article_title>
<author>Menardi</author>
<journal_title>Data Mining and Knowledge
Discovery</journal_title>
<volume>28</volume>
<doi>10.1007/s10618-012-0295-5</doi>
<cYear>2012</cYear>
<unstructured_citation>Menardi, G., &amp; Torelli, N.
(2012). Training and assessing classification rules with imbalanced
data. Data Mining and Knowledge Discovery, 28, 92–122.
https://doi.org/10.1007/s10618-012-0295-5</unstructured_citation>
</citation>
<citation key="Lin:2016">
<article_title>Clustering-based undersampling in
class-imbalanced data</article_title>
<author>Lin</author>
<journal_title>Inf. Sci.</journal_title>
<volume>409</volume>
<doi>10.1016/j.ins.2017.05.008</doi>
<cYear>2016</cYear>
<unstructured_citation>Lin, W.-C., Tsai, C.-F., Hu, Y.-H.,
&amp; Jhang, J.-S. (2016). Clustering-based undersampling in
class-imbalanced data. Inf. Sci., 409, 17–26.
https://doi.org/10.1016/j.ins.2017.05.008</unstructured_citation>
</citation>
<citation key="Hart:1968">
<article_title>The condensed nearest neighbor rule
(corresp.)</article_title>
<author>Hart</author>
<journal_title>IEEE Trans. Inf. Theory</journal_title>
<volume>14</volume>
<doi>10.1109/TIT.1968.1054155</doi>
<cYear>1968</cYear>
<unstructured_citation>Hart, P. E. (1968). The condensed
nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory, 14, 515–516.
https://doi.org/10.1109/TIT.1968.1054155</unstructured_citation>
</citation>
<citation key="Lematre:2016">
<article_title>Imbalanced-learn: A Python toolbox to tackle
the curse of imbalanced datasets in machine learning</article_title>
<author>Lemaître</author>
<journal_title>ArXiv</journal_title>
<volume>abs/1609.06570</volume>
<cYear>2016</cYear>
<unstructured_citation>Lemaître, G., Nogueira, F., &amp;
Aridas, C. K. (2016). Imbalanced-learn: A Python toolbox to tackle the
curse of imbalanced datasets in machine learning. ArXiv, abs/1609.06570.
https://api.semanticscholar.org/CorpusID:1426815</unstructured_citation>
</citation>
<citation key="Kovács:2019">
<article_title>Smote-variants: A Python implementation of 85
minority oversampling techniques</article_title>
<author>Kovács</author>
<journal_title>Neurocomputing</journal_title>
<volume>366</volume>
<doi>10.1016/j.neucom.2019.06.100</doi>
<issn>0925-2312</issn>
<cYear>2019</cYear>
<unstructured_citation>Kovács, G. (2019). Smote-variants: A
Python implementation of 85 minority oversampling techniques.
Neurocomputing, 366, 352–354.
https://doi.org/10.1016/j.neucom.2019.06.100</unstructured_citation>
</citation>
<citation key="DataCamp:2023">
<article_title>The rise of Julia</article_title>
<author>Tuychiev</author>
<cYear>2023</cYear>
<unstructured_citation>Tuychiev, B. (2023). The rise of
Julia.
https://www.datacamp.com/blog/the-rise-of-julia-is-it-worth-learning-in-2022</unstructured_citation>
</citation>
<citation key="Fernández:2013">
<article_title>Analysing the classification of imbalanced
data-sets with multiple classes: Binarization techniques and ad-hoc
approaches</article_title>
<author>Fernández</author>
<journal_title>Knowl. Based Syst.</journal_title>
<volume>42</volume>
<doi>10.1016/J.KNOSYS.2013.01.018</doi>
<cYear>2013</cYear>
<unstructured_citation>Fernández, A., López, V., Galar, M.,
Jesús, M. J. del, &amp; Herrera, F. (2013). Analysing the classification
of imbalanced data-sets with multiple classes: Binarization techniques
and ad-hoc approaches. Knowl. Based Syst., 42, 97–110.
https://doi.org/10.1016/J.KNOSYS.2013.01.018</unstructured_citation>
</citation>
<citation key="Blaom2020MLJAJ">
<article_title>MLJ: A julia package for composable machine
learning</article_title>
<author>Blaom</author>
<journal_title>J. Open Source Softw.</journal_title>
<volume>5</volume>
<doi>10.21105/joss.02704</doi>
<cYear>2020</cYear>
<unstructured_citation>Blaom, A. D., Király, F. J., Lienart,
T., Simillides, Y., Arenas, D., &amp; Vollmer, S. J. (2020). MLJ: A
julia package for composable machine learning. J. Open Source Softw., 5,
2704. https://doi.org/10.21105/joss.02704</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit e3f508c

Please sign in to comment.