Skip to content

Commit

Permalink
Merge pull request #5140 from openjournals/joss.06224
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Mar 17, 2024
2 parents a40de8c + 401f102 commit 6470a24
Show file tree
Hide file tree
Showing 3 changed files with 670 additions and 0 deletions.
232 changes: 232 additions & 0 deletions joss.06224/10.21105.joss.06224.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,232 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240317T145930-0100db6ed0a1d2f3fee5fd2f432d32115f6b7c71</doi_batch_id>
<timestamp>20240317145930</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>03</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>95</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>SelfEEG: A Python library for Self-Supervised Learning
in Electroencephalography</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Federico</given_name>
<surname>Del Pup</surname>
<ORCID>https://orcid.org/0009-0004-0698-962X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Andrea</given_name>
<surname>Zanola</surname>
<ORCID>https://orcid.org/0000-0001-6973-8634</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Louis Fabrice</given_name>
<surname>Tshimanga</surname>
<ORCID>https://orcid.org/0009-0002-1240-4830</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Paolo Emilio</given_name>
<surname>Mazzon</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Manfredo</given_name>
<surname>Atzori</surname>
<ORCID>https://orcid.org/0000-0001-5397-2063</ORCID>
</person_name>
</contributors>
<publication_date>
<month>03</month>
<day>17</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6224</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06224</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10813095</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6224</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06224</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06224</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06224.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="eegrafiei">
<article_title>Self-supervised learning for
electroencephalography</article_title>
<author>Rafiei</author>
<journal_title>IEEE Transactions on Neural Networks and
Learning Systems</journal_title>
<doi>10.1109/TNNLS.2022.3190448</doi>
<cYear>2022</cYear>
<unstructured_citation>Rafiei, M. H., Gauthier, L. V.,
Adeli, H., &amp; Takabi, D. (2022). Self-supervised learning for
electroencephalography. IEEE Transactions on Neural Networks and
Learning Systems.
https://doi.org/10.1109/TNNLS.2022.3190448</unstructured_citation>
</citation>
<citation key="banville">
<article_title>Uncovering the structure of clinical EEG
signals with self-supervised learning</article_title>
<author>Banville</author>
<journal_title>Journal of Neural Engineering</journal_title>
<issue>4</issue>
<volume>18</volume>
<doi>10.1088/1741-2552/abca18</doi>
<cYear>2021</cYear>
<unstructured_citation>Banville, H., Chehab, O., Hyvärinen,
A., Engemann, D.-A., &amp; Gramfort, A. (2021). Uncovering the structure
of clinical EEG signals with self-supervised learning. Journal of Neural
Engineering, 18(4), 046020.
https://doi.org/10.1088/1741-2552/abca18</unstructured_citation>
</citation>
<citation key="DelPup2023">
<article_title>Applications of self-supervised learning to
biomedical signals: A survey</article_title>
<author>Del Pup</author>
<journal_title>IEEE Access</journal_title>
<volume>11</volume>
<doi>10.1109/ACCESS.2023.3344531</doi>
<cYear>2023</cYear>
<unstructured_citation>Del Pup, F., &amp; Atzori, M. (2023).
Applications of self-supervised learning to biomedical signals: A
survey. IEEE Access, 11, 144180–144203.
https://doi.org/10.1109/ACCESS.2023.3344531</unstructured_citation>
</citation>
<citation key="pytorch">
<article_title>Pytorch: An imperative style,
high-performance deep learning library</article_title>
<author>Paszke</author>
<journal_title>Advances in neural information processing
systems</journal_title>
<volume>32</volume>
<doi>10.48550/arXiv.1912.01703</doi>
<cYear>2019</cYear>
<unstructured_citation>Paszke, A., Gross, S., Massa, F.,
Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., &amp; others. (2019). Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information
Processing Systems, 32.
https://doi.org/10.48550/arXiv.1912.01703</unstructured_citation>
</citation>
<citation key="eegdl">
<article_title>A novel approach of decoding EEG four-class
motor imagery tasks via scout ESI and CNN</article_title>
<author>Hou</author>
<journal_title>Journal of Neural Engineering</journal_title>
<issue>1</issue>
<volume>17</volume>
<doi>10.1088/1741-2552/ab4af6</doi>
<unstructured_citation>Hou, Y., Zhou, L., Jia, S., &amp;
Lun, X. (Feb. 2020). A novel approach of decoding EEG four-class motor
imagery tasks via scout ESI and CNN. Journal of Neural Engineering,
17(1), 016048.
https://doi.org/10.1088/1741-2552/ab4af6</unstructured_citation>
</citation>
<citation key="app13095472">
<article_title>An overview of open source deep
learning-based libraries for neuroscience</article_title>
<author>Tshimanga</author>
<journal_title>Applied Sciences</journal_title>
<issue>9</issue>
<volume>13</volume>
<doi>10.3390/app13095472</doi>
<issn>2076-3417</issn>
<cYear>2023</cYear>
<unstructured_citation>Tshimanga, L. F., Del Pup, F.,
Corbetta, M., &amp; Atzori, M. (2023). An overview of open source deep
learning-based libraries for neuroscience. Applied Sciences, 13(9).
https://doi.org/10.3390/app13095472</unstructured_citation>
</citation>
<citation key="torchEEG">
<article_title>TorchEEGEMO: A deep learning toolbox towards
EEG-based emotion recognition</article_title>
<author>Zhang</author>
<journal_title>Expert Systems with
Applications</journal_title>
<doi>10.1016/j.eswa.2024.123550</doi>
<issn>0957-4174</issn>
<cYear>2024</cYear>
<unstructured_citation>Zhang, Z., Zhong, S., &amp; Liu, Y.
(2024). TorchEEGEMO: A deep learning toolbox towards EEG-based emotion
recognition. Expert Systems with Applications, 123550.
https://doi.org/10.1016/j.eswa.2024.123550</unstructured_citation>
</citation>
<citation key="lightly">
<article_title>Lightly</article_title>
<author>Susmelj</author>
<cYear>2024</cYear>
<unstructured_citation>Susmelj, I., Heller, M., Wirth, P.,
Prescott, J., Ebner, M., &amp; others. (2024). Lightly (Version 1.5.0).
https://github.com/lightly-ai/lightly</unstructured_citation>
</citation>
<citation key="vissl">
<article_title>VISSL</article_title>
<author>Goyal</author>
<cYear>2024</cYear>
<unstructured_citation>Goyal, P., Duval, Q., Reizenstein,
J., Leavitt, M., Xu, M., Lefaudeux, B., Singh, M., Reis, V., Caron, M.,
Bojanowski, P., Joulin, A., &amp; Misra, I. (2024). VISSL (Version
0.1.6).
https://github.com/facebookresearch/vissl</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 6470a24

Please sign in to comment.