Skip to content

Commit

Permalink
Merge pull request #5452 from openjournals/joss.06159
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jun 5, 2024
2 parents aaadf5a + a2cdc31 commit c55a468
Show file tree
Hide file tree
Showing 4 changed files with 901 additions and 0 deletions.
275 changes: 275 additions & 0 deletions joss.06159/10.21105.joss.06159.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,275 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240605084814-18bb78f2e6c6982dc9b465cb6faf410041f1c95d</doi_batch_id>
<timestamp>20240605084814</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>06</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>98</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>SAMBA: A Trainable Segmentation Web-App with Smart
Labelling</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Ronan</given_name>
<surname>Docherty</surname>
<ORCID>https://orcid.org/0000-0002-7332-0924</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Isaac</given_name>
<surname>Squires</surname>
<ORCID>https://orcid.org/0000-0003-1919-061X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Antonis</given_name>
<surname>Vamvakeros</surname>
<ORCID>https://orcid.org/0000-0002-4745-0602</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Samuel J.</given_name>
<surname>Cooper</surname>
<ORCID>https://orcid.org/0000-0003-4055-6903</ORCID>
</person_name>
</contributors>
<publication_date>
<month>06</month>
<day>05</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6159</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06159</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11307100</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6159</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06159</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06159</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06159.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="ilastik">
<article_title>Ilastik: Interactive machine learning for
(bio)image analysis</article_title>
<author>Berg</author>
<journal_title>Nature Methods</journal_title>
<doi>10.1038/s41592-019-0582-9</doi>
<issn>1548-7105</issn>
<cYear>2019</cYear>
<unstructured_citation>Berg, S., Kutra, D., Kroeger, T.,
Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M., Ales, J.,
Beier, T., Rudy, M., Eren, K., Cervantes, J. I., Xu, B., Beuttenmueller,
F., Wolny, A., Zhang, C., Koethe, U., Hamprecht, F. A., &amp; Kreshuk,
A. (2019). Ilastik: Interactive machine learning for (bio)image
analysis. Nature Methods.
https://doi.org/10.1038/s41592-019-0582-9</unstructured_citation>
</citation>
<citation key="weka">
<article_title>Trainable Weka Segmentation: A machine
learning tool for microscopy pixel classification</article_title>
<author>Arganda-Carreras</author>
<journal_title>Bioinformatics</journal_title>
<issue>15</issue>
<volume>33</volume>
<doi>10.1093/bioinformatics/btx180</doi>
<issn>1367-4803</issn>
<cYear>2017</cYear>
<unstructured_citation>Arganda-Carreras, I., Kaynig, V.,
Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., &amp;
Sebastian Seung, H. (2017). Trainable Weka Segmentation: A machine
learning tool for microscopy pixel classification. Bioinformatics,
33(15), 2424–2426.
https://doi.org/10.1093/bioinformatics/btx180</unstructured_citation>
</citation>
<citation key="napari">
<article_title>napari: a multi-dimensional image viewer for
Python</article_title>
<author>Ahlers</author>
<doi>10.5281/zenodo.8115575</doi>
<cYear>2023</cYear>
<unstructured_citation>Ahlers, J., Althviz Moré, D.,
Amsalem, O., Anderson, A., Bokota, G., Boone, P., Bragantini, J.,
Buckley, G., Burt, A., Bussonnier, M., Can Solak, A., Caporal, C.,
Doncila Pop, D., Evans, K., Freeman, J., Gaifas, L., Gohlke, C.,
Gunalan, K., Har-Gil, H., … Yamauchi, K. (2023). napari: a
multi-dimensional image viewer for Python (Version v0.4.18). Zenodo.
https://doi.org/10.5281/zenodo.8115575</unstructured_citation>
</citation>
<citation key="napari-apoc">
<article_title>haesleinhuepf/napari-accelerated-pixel-and-object-classification:
0.14.1</article_title>
<author>Haase</author>
<doi>10.5281/zenodo.10071078</doi>
<cYear>2023</cYear>
<unstructured_citation>Haase, R., Lee, D., Pop, D. D., &amp;
Žigutytė, L. (2023).
haesleinhuepf/napari-accelerated-pixel-and-object-classification: 0.14.1
(Version 0.14.1). Zenodo.
https://doi.org/10.5281/zenodo.10071078</unstructured_citation>
</citation>
<citation key="napari-feature-classifier">
<article_title>napari-feature-classifier: An interactive
classifier plugin to use with label images and feature
measurements</article_title>
<author>Luethi</author>
<unstructured_citation>Luethi, J., &amp; Hess, M. (n.d.).
napari-feature-classifier: An interactive classifier plugin to use with
label images and feature measurements.
https://github.com/fractal-napari-plugins-collection/napari-feature-classifier</unstructured_citation>
</citation>
<citation key="FIJI">
<article_title>Fiji: An open-source platform for
biological-image analysis</article_title>
<author>Schindelin</author>
<journal_title>Nature Methods</journal_title>
<issue>7</issue>
<volume>9</volume>
<doi>10.1038/nmeth.2019</doi>
<issn>1548-7105</issn>
<cYear>2012</cYear>
<unstructured_citation>Schindelin, J., Arganda-Carreras, I.,
Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden,
C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein,
V., Eliceiri, K., Tomancak, P., &amp; Cardona, A. (2012). Fiji: An
open-source platform for biological-image analysis. Nature Methods,
9(7), 676–682.
https://doi.org/10.1038/nmeth.2019</unstructured_citation>
</citation>
<citation key="SAM">
<article_title>Segment anything</article_title>
<author>Kirillov</author>
<journal_title>ArXiv e-prints</journal_title>
<doi>10.48550/arXiv.2304.02643</doi>
<cYear>2023</cYear>
<unstructured_citation>Kirillov, A., Mintun, E., Ravi, N.,
Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.
C., Lo, W.-Y., Dollár, P., &amp; Girshick, R. (2023). Segment anything.
In ArXiv e-prints.
https://doi.org/10.48550/arXiv.2304.02643</unstructured_citation>
</citation>
<citation key="micro-SAM">
<article_title>Segment anything for
microscopy</article_title>
<author>Archit</author>
<journal_title>bioRxiv</journal_title>
<doi>10.1101/2023.08.21.554208</doi>
<cYear>2023</cYear>
<unstructured_citation>Archit, A., Nair, S., Khalid, N.,
Hilt, P., Rajashekar, V., Freitag, M., Gupta, S., Dengel, A., Ahmed, S.,
&amp; Pape, C. (2023). Segment anything for microscopy. bioRxiv.
https://doi.org/10.1101/2023.08.21.554208</unstructured_citation>
</citation>
<citation key="ViT-22B">
<article_title>Scaling vision transformers to 22 billion
parameters</article_title>
<author>Dehghani</author>
<journal_title>ArXiv e-prints</journal_title>
<doi>10.48550/arXiv.2302.05442</doi>
<cYear>2023</cYear>
<unstructured_citation>Dehghani, M., Djolonga, J., Mustafa,
B., Padlewski, P., Heek, J., Gilmer, J., Steiner, A., Caron, M.,
Geirhos, R., Alabdulmohsin, I., Jenatton, R., Beyer, L., Tschannen, M.,
Arnab, A., Wang, X., Riquelme, C., Minderer, M., Puigcerver, J., Evci,
U., … Houlsby, N. (2023). Scaling vision transformers to 22 billion
parameters. In ArXiv e-prints.
https://doi.org/10.48550/arXiv.2302.05442</unstructured_citation>
</citation>
<citation key="ONNX">
<article_title>ONNX: Open Neural Network
Exchange</article_title>
<author>Bai</author>
<cYear>2019</cYear>
<unstructured_citation>Bai, J., Lu, F., Zhang, K., &amp;
others. (2019). ONNX: Open Neural Network Exchange. GitHub.
https://github.com/onnx/onnx</unstructured_citation>
</citation>
<citation key="scikit-image">
<article_title>Scikit-image: Image processing in
python</article_title>
<author>Walt</author>
<journal_title>PeerJ</journal_title>
<volume>2</volume>
<doi>10.7717/peerj.453</doi>
<issn>2167-8359</issn>
<cYear>2014</cYear>
<unstructured_citation>Walt, S. van der, Schönberger, J. L.,
Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart,
E., Yu, T., &amp; contributors, the scikit-image. (2014). Scikit-image:
Image processing in python. PeerJ, 2, e453.
https://doi.org/10.7717/peerj.453</unstructured_citation>
</citation>
<citation key="scikit-learn">
<article_title>Scikit-learn: Machine learning in
Python</article_title>
<author>Pedregosa</author>
<journal_title>Journal of Machine Learning
Research</journal_title>
<issue>85</issue>
<volume>12</volume>
<cYear>2011</cYear>
<unstructured_citation>Pedregosa, F., Varoquaux, G.,
Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., &amp; Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12(85), 2825–2830.
http://jmlr.org/papers/v12/pedregosa11a.html</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06159/10.21105.joss.06159.pdf
Binary file not shown.
Loading

0 comments on commit c55a468

Please sign in to comment.