Skip to content

Commit

Permalink
Merge pull request #5450 from openjournals/joss.06157
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jun 4, 2024
2 parents 6409c49 + 82d4762 commit aaadf5a
Show file tree
Hide file tree
Showing 4 changed files with 752 additions and 0 deletions.
225 changes: 225 additions & 0 deletions joss.06157/10.21105.joss.06157.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,225 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240604220556-dad3037d9b037c6c5de3a7e8aeac0c39a0c1833d</doi_batch_id>
<timestamp>20240604220556</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>06</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>98</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>TrackSegNet: a tool for trajectory segmentation into
diffusive states using supervised deep learning</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Hélène</given_name>
<surname>Kabbech</surname>
<ORCID>https://orcid.org/0000-0002-9200-2112</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Ihor</given_name>
<surname>Smal</surname>
<ORCID>https://orcid.org/0000-0001-7576-7028</ORCID>
</person_name>
</contributors>
<publication_date>
<month>06</month>
<day>04</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6157</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06157</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.7767749</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6157</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06157</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06157</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06157.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="arts2019">
<article_title>Particle mobility analysis using deep
learning and the moment scaling spectrum</article_title>
<author>Arts</author>
<journal_title>Scientific reports</journal_title>
<issue>1</issue>
<volume>9</volume>
<doi>10.1038/s41598-019-53663-8</doi>
<cYear>2019</cYear>
<unstructured_citation>Arts, M., Smal, I., Paul, M. W.,
Wyman, C., &amp; Meijering, E. (2019). Particle mobility analysis using
deep learning and the moment scaling spectrum. Scientific Reports, 9(1),
17160.
https://doi.org/10.1038/s41598-019-53663-8</unstructured_citation>
</citation>
<citation key="munoz2021">
<article_title>Objective comparison of methods to decode
anomalous diffusion</article_title>
<author>Muñoz-Gil</author>
<journal_title>Nature communications</journal_title>
<issue>1</issue>
<volume>12</volume>
<doi>10.1038/s41467-021-26320-w</doi>
<cYear>2021</cYear>
<unstructured_citation>Muñoz-Gil, G., Volpe, G.,
Garcia-March, M. A., Aghion, E., Argun, A., Hong, C. B., Bland, T., Bo,
S., Conejero, J. A., Firbas, N., &amp; others. (2021). Objective
comparison of methods to decode anomalous diffusion. Nature
Communications, 12(1), 6253.
https://doi.org/10.1038/s41467-021-26320-w</unstructured_citation>
</citation>
<citation key="metzler2014">
<article_title>Anomalous diffusion models and their
properties: Non-stationarity, non-ergodicity, and ageing at the
centenary of single particle tracking</article_title>
<author>Metzler</author>
<journal_title>Physical Chemistry Chemical
Physics</journal_title>
<issue>44</issue>
<volume>16</volume>
<doi>10.1039/C4CP03465A</doi>
<cYear>2014</cYear>
<unstructured_citation>Metzler, R., Jeon, J. H., Cherstvy,
A. G., &amp; Barkai, E. (2014). Anomalous diffusion models and their
properties: Non-stationarity, non-ergodicity, and ageing at the
centenary of single particle tracking. Physical Chemistry Chemical
Physics, 16(44), 24128–24164.
https://doi.org/10.1039/C4CP03465A</unstructured_citation>
</citation>
<citation key="lundahl1986">
<article_title>Fractional brownian motion: A maximum
likelihood estimator and its application to image
texture</article_title>
<author>Lundahl</author>
<journal_title>IEEE transactions on Medical
Imaging</journal_title>
<issue>3</issue>
<volume>5</volume>
<doi>10.1109/TMI.1986.4307764</doi>
<cYear>1986</cYear>
<unstructured_citation>Lundahl, T., Ohley, W. J., Kay, S.
M., &amp; Siffert, R. (1986). Fractional brownian motion: A maximum
likelihood estimator and its application to image texture. IEEE
Transactions on Medical Imaging, 5(3), 152–161.
https://doi.org/10.1109/TMI.1986.4307764</unstructured_citation>
</citation>
<citation key="hansen2018">
<article_title>Robust model-based analysis of
single-particle tracking experiments with spot-on</article_title>
<author>Hansen</author>
<journal_title>Elife</journal_title>
<volume>7</volume>
<doi>10.7554/eLife.33125</doi>
<cYear>2018</cYear>
<unstructured_citation>Hansen, A. S., Woringer, M., Grimm,
J. B., Lavis, L. D., Tjian, R., &amp; Darzacq, X. (2018). Robust
model-based analysis of single-particle tracking experiments with
spot-on. Elife, 7, e33125.
https://doi.org/10.7554/eLife.33125</unstructured_citation>
</citation>
<citation key="wagner2017">
<article_title>Classification and segmentation of
nanoparticle diffusion trajectories in cellular micro
environments</article_title>
<author>Wagner</author>
<journal_title>PloS one</journal_title>
<issue>1</issue>
<volume>12</volume>
<doi>10.1371/journal.pone.0170165</doi>
<cYear>2017</cYear>
<unstructured_citation>Wagner, T., Kroll, A., Haramagatti,
C. R., Lipinski, H. G., &amp; Wiemann, M. (2017). Classification and
segmentation of nanoparticle diffusion trajectories in cellular micro
environments. PloS One, 12(1), e0170165.
https://doi.org/10.1371/journal.pone.0170165</unstructured_citation>
</citation>
<citation key="pinholt2021">
<article_title>Single-particle diffusional fingerprinting: A
machine-learning framework for quantitative analysis of heterogeneous
diffusion</article_title>
<author>Pinholt</author>
<journal_title>Proceedings of the National Academy of
Sciences</journal_title>
<issue>31</issue>
<volume>118</volume>
<doi>10.1073/pnas.2104624118</doi>
<cYear>2021</cYear>
<unstructured_citation>Pinholt, H. D., Bohr, S. S. R.,
Iversen, J. F., Boomsma, W., &amp; Hatzakis, N. S. (2021).
Single-particle diffusional fingerprinting: A machine-learning framework
for quantitative analysis of heterogeneous diffusion. Proceedings of the
National Academy of Sciences, 118(31), e2104624118.
https://doi.org/10.1073/pnas.2104624118</unstructured_citation>
</citation>
<citation key="kabbech2022">
<article_title>Identification of diffusive states in
tracking applications using unsupervised deep learning
methods</article_title>
<author>Kabbech</author>
<journal_title>2022 IEEE 19th international symposium on
biomedical imaging (ISBI)</journal_title>
<doi>10.1109/ISBI52829.2022.9761672</doi>
<cYear>2022</cYear>
<unstructured_citation>Kabbech, H., &amp; Smal, I. (2022).
Identification of diffusive states in tracking applications using
unsupervised deep learning methods. 2022 IEEE 19th International
Symposium on Biomedical Imaging (ISBI), 1–4.
https://doi.org/10.1109/ISBI52829.2022.9761672</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06157/10.21105.joss.06157.pdf
Binary file not shown.
Loading

0 comments on commit aaadf5a

Please sign in to comment.