Skip to content

Commit

Permalink
Merge pull request #4989 from openjournals/joss.06317
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Feb 7, 2024
2 parents c88d2b6 + f4f9981 commit 001eb5b
Show file tree
Hide file tree
Showing 4 changed files with 842 additions and 0 deletions.
286 changes: 286 additions & 0 deletions joss.06317/10.21105.joss.06317.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240207T213731-503810327906f70a4bd187ed3df3dd546298e5d4</doi_batch_id>
<timestamp>20240207213731</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>02</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>94</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>HistoJS: Web-Based Analytical Tool for Advancing
Multiplexed Images</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Mohamed</given_name>
<surname>Masoud</surname>
<ORCID>https://orcid.org/0000-0002-5365-242X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>David</given_name>
<surname>Gutman</surname>
<ORCID>https://orcid.org/0000-0002-1386-8701</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Sergey</given_name>
<surname>Plis</surname>
<ORCID>https://orcid.org/0000-0003-0040-0365</ORCID>
</person_name>
</contributors>
<publication_date>
<month>02</month>
<day>07</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6317</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06317</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10626533</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6317</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06317</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06317</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06317.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="gutman2017digital">
<article_title>The digital slide archive: A software
platform for management, integration, and analysis of histology for
cancer research</article_title>
<author>Gutman</author>
<journal_title>Cancer research</journal_title>
<issue>21</issue>
<volume>77</volume>
<doi>10.1158/0008-5472.CAN-17-0629</doi>
<cYear>2017</cYear>
<unstructured_citation>Gutman, D. A., Khalilia, M., Lee, S.,
Nalisnik, M., Mullen, Z., Beezley, J., Chittajallu, D. R., Manthey, D.,
&amp; Cooper, L. A. (2017). The digital slide archive: A software
platform for management, integration, and analysis of histology for
cancer research. Cancer Research, 77(21), e75–e78.
https://doi.org/10.1158/0008-5472.CAN-17-0629</unstructured_citation>
</citation>
<citation key="OpenSeadragon">
<article_title>OpenSeadragon</article_title>
<author>OpenSeadragon dev. team</author>
<cYear>2022</cYear>
<unstructured_citation>OpenSeadragon dev. team. (2022).
OpenSeadragon. GitHub Pages.
http://openseadragon.github.io/</unstructured_citation>
</citation>
<citation key="lin2015highly">
<article_title>Highly multiplexed imaging of single cells
using a high-throughput cyclic immunofluorescence method</article_title>
<author>Lin</author>
<journal_title>Nature communications</journal_title>
<issue>1</issue>
<volume>6</volume>
<doi>10.1038/ncomms9390</doi>
<cYear>2015</cYear>
<unstructured_citation>Lin, J.-R., Fallahi-Sichani, M.,
&amp; Sorger, P. K. (2015). Highly multiplexed imaging of single cells
using a high-throughput cyclic immunofluorescence method. Nature
Communications, 6(1), 8390.
https://doi.org/10.1038/ncomms9390</unstructured_citation>
</citation>
<citation key="lin2018highly">
<article_title>Highly multiplexed immunofluorescence imaging
of human tissues and tumors using t-CyCIF and conventional optical
microscopes</article_title>
<author>Lin</author>
<journal_title>elife</journal_title>
<volume>7</volume>
<doi>10.7554/eLife.31657</doi>
<cYear>2018</cYear>
<unstructured_citation>Lin, J.-R., Izar, B., Wang, S., Yapp,
C., Mei, S., Shah, P. M., Santagata, S., &amp; Sorger, P. K. (2018).
Highly multiplexed immunofluorescence imaging of human tissues and
tumors using t-CyCIF and conventional optical microscopes. Elife, 7.
https://doi.org/10.7554/eLife.31657</unstructured_citation>
</citation>
<citation key="gerdes2013highly">
<article_title>Highly multiplexed single-cell analysis of
formalin-fixed, paraffin-embedded cancer tissue</article_title>
<author>Gerdes</author>
<journal_title>Proceedings of the National Academy of
Sciences</journal_title>
<issue>29</issue>
<volume>110</volume>
<doi>10.1073/pnas.1300136110</doi>
<cYear>2013</cYear>
<unstructured_citation>Gerdes, M. J., Sevinsky, C. J., Sood,
A., Adak, S., Bello, M. O., Bordwell, A., Can, A., Corwin, A., Dinn, S.,
Filkins, R. J., &amp; others. (2013). Highly multiplexed single-cell
analysis of formalin-fixed, paraffin-embedded cancer tissue. Proceedings
of the National Academy of Sciences, 110(29), 11982–11987.
https://doi.org/10.1073/pnas.1300136110</unstructured_citation>
</citation>
<citation key="schmidt2018cell">
<article_title>Cell detection with star-convex
polygons</article_title>
<author>Schmidt</author>
<journal_title>Medical image computing and computer assisted
intervention–MICCAI 2018: 21st international conference, granada, spain,
september 16-20, 2018, proceedings, part II 11</journal_title>
<doi>10.1007/978-3-030-00934-2_30</doi>
<cYear>2018</cYear>
<unstructured_citation>Schmidt, U., Weigert, M., Broaddus,
C., &amp; Myers, G. (2018). Cell detection with star-convex polygons.
Medical Image Computing and Computer Assisted Intervention–MICCAI 2018:
21st International Conference, Granada, Spain, September 16-20, 2018,
Proceedings, Part II 11, 265–273.
https://doi.org/10.1007/978-3-030-00934-2_30</unstructured_citation>
</citation>
<citation key="gabriel1969new">
<article_title>A new statistical approach to geographic
variation analysis</article_title>
<author>Gabriel</author>
<journal_title>Systematic zoology</journal_title>
<issue>3</issue>
<volume>18</volume>
<doi>10.2307/2412323</doi>
<cYear>1969</cYear>
<unstructured_citation>Gabriel, K. R., &amp; Sokal, R. R.
(1969). A new statistical approach to geographic variation analysis.
Systematic Zoology, 18(3), 259–278.
https://doi.org/10.2307/2412323</unstructured_citation>
</citation>
<citation key="goltsev2018deep">
<article_title>Deep profiling of mouse splenic architecture
with CODEX multiplexed imaging</article_title>
<author>Goltsev</author>
<journal_title>Cell</journal_title>
<issue>4</issue>
<volume>174</volume>
<doi>10.1016/j.cell.2018.07.010</doi>
<cYear>2018</cYear>
<unstructured_citation>Goltsev, Y., Samusik, N.,
Kennedy-Darling, J., Bhate, S., Hale, M., Vazquez, G., Black, S., &amp;
Nolan, G. P. (2018). Deep profiling of mouse splenic architecture with
CODEX multiplexed imaging. Cell, 174(4), 968–981.
https://doi.org/10.1016/j.cell.2018.07.010</unstructured_citation>
</citation>
<citation key="angelo2014multiplexed">
<article_title>Multiplexed ion beam imaging of human breast
tumors</article_title>
<author>Angelo</author>
<journal_title>Nature medicine</journal_title>
<issue>4</issue>
<volume>20</volume>
<doi>10.1038/nm.3488</doi>
<cYear>2014</cYear>
<unstructured_citation>Angelo, M., Bendall, S. C., Finck,
R., Hale, M. B., Hitzman, C., Borowsky, A. D., Levenson, R. M., Lowe, J.
B., Liu, S. D., Zhao, S., &amp; others. (2014). Multiplexed ion beam
imaging of human breast tumors. Nature Medicine, 20(4), 436–442.
https://doi.org/10.1038/nm.3488</unstructured_citation>
</citation>
<citation key="bankhead2017qupath">
<article_title>QuPath: Open source software for digital
pathology image analysis</article_title>
<author>Bankhead</author>
<journal_title>Scientific reports</journal_title>
<issue>1</issue>
<volume>7</volume>
<doi>10.1038/s41598-017-17204-5</doi>
<cYear>2017</cYear>
<unstructured_citation>Bankhead, P., Loughrey, M. B.,
Fernández, J. A., Dombrowski, Y., McArt, D. G., Dunne, P. D., McQuaid,
S., Gray, R. T., Murray, L. J., Coleman, H. G., &amp; others. (2017).
QuPath: Open source software for digital pathology image analysis.
Scientific Reports, 7(1), 1–7.
https://doi.org/10.1038/s41598-017-17204-5</unstructured_citation>
</citation>
<citation key="tensorflow-js">
<article_title>TensorFlow.js: Machine learning for the web
and beyond</article_title>
<author>Smilkov</author>
<journal_title>arXiv</journal_title>
<doi>10.48550/arXiv.1901.05350</doi>
<cYear>2019</cYear>
<unstructured_citation>Smilkov, D., Thorat, N., Assogba, Y.,
Nicholson, C., Kreeger, N., Yu, P., Cai, S., Nielsen, E., Soegel, D.,
&amp; others. (2019). TensorFlow.js: Machine learning for the web and
beyond. arXiv.
https://doi.org/10.48550/arXiv.1901.05350</unstructured_citation>
</citation>
<citation key="DataSet-1">
<article_title>Lung dataset-1</article_title>
<author>Rashid</author>
<doi>10.7303/syn17865732</doi>
<cYear>2019</cYear>
<unstructured_citation>Rashid, R., &amp; others. (2019).
Lung dataset-1. Synapse repository.
https://doi.org/10.7303/syn17865732</unstructured_citation>
</citation>
<citation key="credit">
<article_title>Beyond authorship: Attribution, contribution,
collaboration, and credit</article_title>
<author>Brand</author>
<journal_title>Learned Publishing</journal_title>
<issue>2</issue>
<volume>28</volume>
<doi>10.1087/20150211</doi>
<cYear>2015</cYear>
<unstructured_citation>Brand, A., Allen, L., Altman, M.,
Hlava, M., &amp; Scott, J. (2015). Beyond authorship: Attribution,
contribution, collaboration, and credit. Learned Publishing, 28(2),
151–155. https://doi.org/10.1087/20150211</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 001eb5b

Please sign in to comment.