Skip to content

Commit

Permalink
Merge pull request #4988 from openjournals/joss.05886
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Feb 7, 2024
2 parents 09330ed + 716076b commit c88d2b6
Show file tree
Hide file tree
Showing 4 changed files with 915 additions and 0 deletions.
322 changes: 322 additions & 0 deletions joss.05886/10.21105.joss.05886.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,322 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240207T212053-7123bfb8f0c226fde12ad5612f3b735e9617b426</doi_batch_id>
<timestamp>20240207212053</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>02</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>94</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>CLEAVING: a LAMMPS package to compute surface free
energies</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Nicodemo Di</given_name>
<surname>Pasquale</surname>
<ORCID>https://orcid.org/0000-0001-5676-8527</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Ruslan</given_name>
<surname>Davidchack</surname>
<ORCID>https://orcid.org/0000-0001-9418-5322</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Lorenzo</given_name>
<surname>Rovigatti</surname>
<ORCID>https://orcid.org/0000-0001-5017-2829</ORCID>
</person_name>
</contributors>
<publication_date>
<month>02</month>
<day>07</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>5886</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05886</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10567702</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5886</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05886</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05886</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05886.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Thompson2022">
<article_title>LAMMPS-a flexible simulation tool for
particle-based materials modeling at the atomic, meso, and continuum
scales</article_title>
<author>Thompson</author>
<journal_title>Computer Physics
Communications</journal_title>
<volume>271</volume>
<doi>10.1016/j.cpc.2021.108171</doi>
<cYear>2022</cYear>
<unstructured_citation>Thompson, A. P., Aktulga, H. M.,
Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., Veld, P.
J. in’t, Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens,
M. J., Tranchida, J., Trott, C., &amp; Plimpton, S. J. (2022). LAMMPS-a
flexible simulation tool for particle-based materials modeling at the
atomic, meso, and continuum scales. Computer Physics Communications,
271, 108171.
https://doi.org/10.1016/j.cpc.2021.108171</unstructured_citation>
</citation>
<citation key="DiPasquale2022cleaving">
<article_title>Cleaving method for molecular crystals and
its application to calculation of the surface free energy of crystalline
\beta-d-mannitol at room temperature</article_title>
<author>Di Pasquale</author>
<journal_title>The Journal of Physical Chemistry
A</journal_title>
<issue>13</issue>
<volume>126</volume>
<doi>10.1021/acs.jpca.2c00604</doi>
<cYear>2022</cYear>
<unstructured_citation>Di Pasquale, N., &amp; Davidchack, R.
L. (2022). Cleaving method for molecular crystals and its application to
calculation of the surface free energy of crystalline \beta-d-mannitol
at room temperature. The Journal of Physical Chemistry A, 126(13),
2134–2141.
https://doi.org/10.1021/acs.jpca.2c00604</unstructured_citation>
</citation>
<citation key="DiPasquale2020shuttleworth">
<article_title>Shuttleworth equation: A molecular
simulations perspective</article_title>
<author>Di Pasquale</author>
<journal_title>The Journal of Chemical
Physics</journal_title>
<issue>15</issue>
<volume>153</volume>
<doi>10.1063/5.0028219</doi>
<cYear>2020</cYear>
<unstructured_citation>Di Pasquale, N., &amp; Davidchack, R.
L. (2020). Shuttleworth equation: A molecular simulations perspective.
The Journal of Chemical Physics, 153(15), 154705.
https://doi.org/10.1063/5.0028219</unstructured_citation>
</citation>
<citation key="GibbsCollectedWorks">
<article_title>The collected works of j. Willard
gibbs.</article_title>
<author>Gibbs</author>
<doi>10.1038/124119a0</doi>
<cYear>1948</cYear>
<unstructured_citation>Gibbs, J. W. (1948). The collected
works of j. Willard gibbs. Yale Univ. Press.
https://doi.org/10.1038/124119a0</unstructured_citation>
</citation>
<citation key="Broughton1983">
<article_title>Molecular dynamics investigation of the
crystal–fluid interface. I. Bulk properties</article_title>
<author>Broughton</author>
<journal_title>Journal of Chemical Physics</journal_title>
<issue>10</issue>
<volume>79</volume>
<doi>10.1063/1.445633</doi>
<cYear>1983</cYear>
<unstructured_citation>Broughton, J. Q., &amp; Gilmer, G. H.
(1983). Molecular dynamics investigation of the crystal–fluid interface.
I. Bulk properties. Journal of Chemical Physics, 79(10), 5095–5104.
https://doi.org/10.1063/1.445633</unstructured_citation>
</citation>
<citation key="Broughton1986Cleaving">
<article_title>Molecular dynamics investigation of the
crystal–fluid interface. VI. Excess surface free energies of
crystal–liquid systems</article_title>
<author>Broughton</author>
<journal_title>The Journal of chemical
physics</journal_title>
<issue>10</issue>
<volume>84</volume>
<doi>10.1063/1.449884</doi>
<cYear>1986</cYear>
<unstructured_citation>Broughton, J. Q., &amp; Gilmer, G. H.
(1986). Molecular dynamics investigation of the crystal–fluid interface.
VI. Excess surface free energies of crystal–liquid systems. The Journal
of Chemical Physics, 84(10), 5759–5768.
https://doi.org/10.1063/1.449884</unstructured_citation>
</citation>
<citation key="Davidchack00prl">
<article_title>Direct calculation of the hard-sphere
crystal/melt interfacial free energy</article_title>
<author>Davidchack</author>
<journal_title>Physical review letters</journal_title>
<issue>22</issue>
<volume>85</volume>
<doi>10.1103/PhysRevLett.85.4751</doi>
<cYear>2000</cYear>
<unstructured_citation>Davidchack, R. L., &amp; Laird, B. B.
(2000). Direct calculation of the hard-sphere crystal/melt interfacial
free energy. Physical Review Letters, 85(22), 4751.
https://doi.org/10.1103/PhysRevLett.85.4751</unstructured_citation>
</citation>
<citation key="Davidchack05prl">
<article_title>Crystal structure and interaction dependence
of the crystal-melt interfacial free energy</article_title>
<author>Davidchack</author>
<journal_title>Physical review letters</journal_title>
<issue>8</issue>
<volume>94</volume>
<doi>10.1103/physrevlett.94.086102</doi>
<cYear>2005</cYear>
<unstructured_citation>Davidchack, R. L., &amp; Laird, B. B.
(2005). Crystal structure and interaction dependence of the crystal-melt
interfacial free energy. Physical Review Letters, 94(8), 086102.
https://doi.org/10.1103/physrevlett.94.086102</unstructured_citation>
</citation>
<citation key="Davidchack03direct">
<article_title>Direct calculation of the crystal–melt
interfacial free energies for continuous potentials: Application to the
lennard-jones system</article_title>
<author>Davidchack</author>
<journal_title>The Journal of chemical
physics</journal_title>
<issue>16</issue>
<volume>118</volume>
<doi>10.1063/1.1563248</doi>
<cYear>2003</cYear>
<unstructured_citation>Davidchack, R. L., &amp; Laird, B. B.
(2003). Direct calculation of the crystal–melt interfacial free energies
for continuous potentials: Application to the lennard-jones system. The
Journal of Chemical Physics, 118(16), 7651–7657.
https://doi.org/10.1063/1.1563248</unstructured_citation>
</citation>
<citation key="Handel08prl">
<article_title>Direct calculation of solid-liquid
interfacial free energy for molecular systems: TIP4P ice-water
interface</article_title>
<author>Handel</author>
<journal_title>Physical review letters</journal_title>
<issue>3</issue>
<volume>100</volume>
<doi>10.1103/physrevlett.100.036104</doi>
<cYear>2008</cYear>
<unstructured_citation>Handel, R., Davidchack, R. L., Anwar,
J., &amp; Brukhno, A. (2008). Direct calculation of solid-liquid
interfacial free energy for molecular systems: TIP4P ice-water
interface. Physical Review Letters, 100(3), 036104.
https://doi.org/10.1103/physrevlett.100.036104</unstructured_citation>
</citation>
<citation key="Davidchack12ice">
<article_title>Ice ih–water interfacial free energy of
simple water models with full electrostatic interactions</article_title>
<author>Davidchack</author>
<journal_title>Journal of Chemical Theory and
Computation</journal_title>
<issue>7</issue>
<volume>8</volume>
<doi>10.1021/ct300193e</doi>
<cYear>2012</cYear>
<unstructured_citation>Davidchack, R. L., Handel, R., Anwar,
J., &amp; Brukhno, A. V. (2012). Ice ih–water interfacial free energy of
simple water models with full electrostatic interactions. Journal of
Chemical Theory and Computation, 8(7), 2383–2390.
https://doi.org/10.1021/ct300193e</unstructured_citation>
</citation>
<citation key="Liu2013csm">
<article_title>Molecular dynamics calculation of
solid–liquid interfacial free energy and its anisotropy during iron
solidification</article_title>
<author>Liu</author>
<journal_title>Computational materials
science</journal_title>
<volume>74</volume>
<doi>10.1016/j.commatsci.2013.03.018</doi>
<cYear>2013</cYear>
<unstructured_citation>Liu, J., Davidchack, R., &amp; Dong,
H. (2013). Molecular dynamics calculation of solid–liquid interfacial
free energy and its anisotropy during iron solidification. Computational
Materials Science, 74, 92–100.
https://doi.org/10.1016/j.commatsci.2013.03.018</unstructured_citation>
</citation>
<citation key="Qi2016jcp">
<article_title>Obtaining the solid-liquid interfacial free
energy via multi-scheme thermodynamic integration: Ag-ethylene glycol
interfaces</article_title>
<author>Qi</author>
<journal_title>The Journal of Chemical
Physics</journal_title>
<issue>19</issue>
<volume>145</volume>
<doi>10.1063/1.4967521</doi>
<cYear>2016</cYear>
<unstructured_citation>Qi, X., Zhou, Y., &amp; Fichthorn, K.
A. (2016). Obtaining the solid-liquid interfacial free energy via
multi-scheme thermodynamic integration: Ag-ethylene glycol interfaces.
The Journal of Chemical Physics, 145(19), 194108.
https://doi.org/10.1063/1.4967521</unstructured_citation>
</citation>
<citation key="addula2020computation">
<article_title>Computation of solid–fluid interfacial free
energy in molecular systems using thermodynamic
integration</article_title>
<author>Addula</author>
<journal_title>The Journal of Chemical
Physics</journal_title>
<issue>15</issue>
<volume>153</volume>
<doi>10.1063/5.0028653</doi>
<cYear>2020</cYear>
<unstructured_citation>Addula, R. K. R., &amp; Punnathanam,
S. N. (2020). Computation of solid–fluid interfacial free energy in
molecular systems using thermodynamic integration. The Journal of
Chemical Physics, 153(15), 154504.
https://doi.org/10.1063/5.0028653</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit c88d2b6

Please sign in to comment.