This repository hosts the code for paper Spatio-Temporal Attention Network for Persistent Monitoring of Multiple Mobile Targets, accepted for presentation at IROS 2023.
python >= 3.9
pytorch >= 1.11
ray >= 2.0
ortools
scikit-image
scikit-learn
scipy
imageio
tensorboard
- Set appropriate parameters in
arguments.py -> Arguments
. - Run
python driver.py
.
- Set appropriate parameters in
arguments.py -> ArgumentsEval
. - Run
python /evals/eval_driver.py
.
arguments.py
: Training and evaluation arguments.driver.py
: Driver of training program, maintain and update the global network.runner.py
: Wrapper of the local network.worker.py
: Interact with environment and collect episode experience.network.py
: Spatio-temporal network architecture.env.py
: Persistent monitoring environment.gaussian_process.py
: Gaussian processes (wrapper) for belief representation./evals/*
: Evaluation files./utils/*
: Utility files for graph, target motion, and TSP./model/*
: Trained model.
@inproceedings{wang2023spatio,
title={Spatio-Temporal Attention Network for Persistent Monitoring of Multiple Mobile Targets},
author={Wang, Yizhuo and Wang, Yutong and Cao, Yuhong and Sartoretti, Guillaume},
booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2023}
}
Authors: Yizhuo Wang, Yutong Wang, Yuhong Cao, Guillaume Sartoretti