Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(Analysis/BoxIntegral/UnitPartition): Prove results linking integral point counting and integrals #12405

Open
wants to merge 34 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
34 commits
Select commit Hold shift + click to select a range
61925bf
1st commit
xroblot Apr 24, 2024
3e714cf
Lint
xroblot Apr 24, 2024
79e9053
Merge remote-tracking branch 'origin/master' into xfr-unitpart
xroblot May 14, 2024
1bd8236
Merge remote-tracking branch 'origin/master' into xfr-unitpart
xroblot May 17, 2024
af31a99
merge
xroblot May 18, 2024
681da0f
Merge remote-tracking branch 'origin/master' into xfr-unitpart
xroblot May 18, 2024
62fc86a
Comments
xroblot May 19, 2024
3314932
Merge remote-tracking branch 'origin/master' into xfr-unitpart
xroblot Sep 10, 2024
626198e
Backport changes
xroblot Sep 10, 2024
757cdcd
Backport changes
xroblot Sep 10, 2024
cc096de
1st commit
xroblot Sep 10, 2024
69944c9
clean up
xroblot Sep 11, 2024
7117516
Whitespace
xroblot Sep 11, 2024
8590033
more whitespaces...
xroblot Sep 11, 2024
66e5867
Shake
xroblot Sep 11, 2024
91763bf
Merge remote-tracking branch 'origin/xfr-unitpart_basic' into xfr-uni…
xroblot Sep 11, 2024
1d278df
Clean up
xroblot Sep 12, 2024
a171189
remove old file
xroblot Sep 12, 2024
870b304
Merge remote-tracking branch 'origin/master' into xfr-unitpart
xroblot Oct 23, 2024
1cc3986
Fix deprecated
xroblot Oct 23, 2024
8fb4d81
Update Basic.lean
xroblot Oct 24, 2024
235c58e
Merge remote-tracking branch 'origin/master' into xfr-unitpart
xroblot Nov 29, 2024
37426df
Merge remote-tracking branch 'refs/remotes/origin/xfr-unitpart' into …
xroblot Nov 29, 2024
09dde2f
Name changes + cleanup
xroblot Nov 29, 2024
5bddade
Docstring
xroblot Nov 29, 2024
a53cb26
Review
xroblot Nov 30, 2024
3bae741
More review
xroblot Nov 30, 2024
966f0eb
Review
xroblot Nov 30, 2024
b041e2b
Review
xroblot Nov 30, 2024
a73be94
Add lemma + fixes
xroblot Nov 30, 2024
dc542ce
Cleaner version
xroblot Nov 30, 2024
3983af5
Small golf
xroblot Nov 30, 2024
31f190d
Review
xroblot Dec 1, 2024
06b4225
Review
xroblot Dec 2, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 9 additions & 1 deletion Mathlib/Algebra/Group/Indicator.lean
Original file line number Diff line number Diff line change
Expand Up @@ -120,9 +120,17 @@ set. -/
theorem mem_of_mulIndicator_ne_one (h : mulIndicator s f a ≠ 1) : a ∈ s :=
not_imp_comm.1 (fun hn => mulIndicator_of_not_mem hn f) h

@[to_additive]
/-- See `Set.eqOn_mulIndicator'` for the version with `sᶜ`. -/
@[to_additive
"See `Set.eqOn_indicator'` for the version with `sᶜ`"]
theorem eqOn_mulIndicator : EqOn (mulIndicator s f) f s := fun _ hx => mulIndicator_of_mem hx f

/-- See `Set.eqOn_mulIndicator` for the version with `s`. -/
@[to_additive
"See `Set.eqOn_indicator` for the version with `s`."]
theorem eqOn_mulIndicator' : EqOn (mulIndicator s f) 1 sᶜ :=
fun _ hx => mulIndicator_of_not_mem hx f

@[to_additive]
theorem mulSupport_mulIndicator_subset : mulSupport (s.mulIndicator f) ⊆ s := fun _ hx =>
hx.imp_symm fun h => mulIndicator_of_not_mem h f
Expand Down
15 changes: 14 additions & 1 deletion Mathlib/Algebra/Module/ZLattice/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -62,11 +62,17 @@ variable (b : Basis ι K E)

theorem span_top : span K (span ℤ (Set.range b) : Set E) = ⊤ := by simp [span_span_of_tower]


theorem map {F : Type*} [NormedAddCommGroup F] [NormedSpace K F] (f : E ≃ₗ[K] F) :
Submodule.map (f.restrictScalars ℤ) (span ℤ (Set.range b)) = span ℤ (Set.range (b.map f)) := by
simp_rw [Submodule.map_span, LinearEquiv.restrictScalars_apply, Basis.coe_map, Set.range_comp]

open scoped Pointwise in
theorem smul {c : K} (hc : c ≠ 0) :
c • span ℤ (Set.range b) = span ℤ (Set.range (b.isUnitSMul (fun _ ↦ hc.isUnit))) := by
rw [smul_span, Set.smul_set_range]
congr!
rw [Basis.isUnitSMul_apply]

/-- The fundamental domain of the ℤ-lattice spanned by `b`. See `ZSpan.isAddFundamentalDomain`
for the proof that it is a fundamental domain. -/
def fundamentalDomain : Set E := {m | ∀ i, b.repr m i ∈ Set.Ico (0 : K) 1}
Expand Down Expand Up @@ -309,6 +315,13 @@ instance [Finite ι] : DiscreteTopology (span ℤ (Set.range b)) := by
instance [Finite ι] : DiscreteTopology (span ℤ (Set.range b)).toAddSubgroup :=
inferInstanceAs <| DiscreteTopology (span ℤ (Set.range b))

theorem setFinite_inter [ProperSpace E] [Finite ι] {s : Set E} (hs : Bornology.IsBounded s) :
Set.Finite (s ∩ span ℤ (Set.range b)) := by
have : DiscreteTopology (span ℤ (Set.range b)) := inferInstance
refine Metric.finite_isBounded_inter_isClosed hs ?_
change IsClosed (span ℤ (Set.range b)).toAddSubgroup
infer_instance

@[measurability]
theorem fundamentalDomain_measurableSet [MeasurableSpace E] [OpensMeasurableSpace E] [Finite ι] :
MeasurableSet (fundamentalDomain b) := by
Expand Down
197 changes: 194 additions & 3 deletions Mathlib/Analysis/BoxIntegral/UnitPartition.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,8 @@ Copyright (c) 2024 Xavier Roblot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Xavier Roblot
-/
import Mathlib.Algebra.Module.ZLattice.Basic
import Mathlib.Analysis.BoxIntegral.Integrability
import Mathlib.Analysis.BoxIntegral.Partition.Measure
import Mathlib.Analysis.BoxIntegral.Partition.Tagged

Expand All @@ -11,13 +13,12 @@ import Mathlib.Analysis.BoxIntegral.Partition.Tagged

Fix `n` a positive integer. `BoxIntegral.unitPartition.box` are boxes in `ι → ℝ` obtained by
dividing the unit box uniformly into boxes of side length `1 / n` and translating the boxes by
the lattice `ι → ℤ` so that they cover the whole space. For fixed `n`, there are indexed by
vectors `ν : ι → ℤ`.

Let `B` be a `BoxIntegral`. A `unitPartition.box` is admissible for `B` (more precisely its index is
admissible) if it is contained in `B`. There are finitely many admissible `unitPartition.box` for
`B` and thus we can form the corresponing tagged prepartition, see
`BoxIntegral.unitPartition.prepartition` (note that each `unitPartition.Box` comes with its
`BoxIntegral.unitPartition.prepartition` (note that each `unitPartition.box` comes with its
tag situated at its "upper most" vertex). If `B` satisfies `hasIntegralVertices`, that
is its vertices are in `ι → ℤ`, then the corresponding prepartition is actually a partition.

Expand All @@ -35,6 +36,20 @@ coordinates in `ℤ`
* `BoxIntegral.unitPartition.prepartition_isPartition`: For `B : BoxIntegral.Box`, if `B`
has integral vertices, then the prepartition of `unitPartition.box` admissible for `B` is a
partition of `B`.

* `tendsto_tsum_div_pow_atTop_integral`: let `s` be a bounded, measurable set of `ι → ℝ`
whose frontier has zero volume and let `F` be a continuous function. Then the limit as `n → ∞`
of `∑ F x / n ^ card ι`, where the sum is over the points in `s ∩ n⁻¹ • (ι → ℤ)`, tends to the
integral of `F` over `s`.

* `tendsto_card_div_pow_atTop_volume`: let `s` be a bounded, measurable set of `ι → ℝ` whose
frontier has zero volume. Then the limit as `n → ∞` of `card (s ∩ n⁻¹ • (ι → ℤ)) / n ^ card ι`
tends to the volume of `s`.

* `tendsto_card_div_pow_atTop_volume'`: a version of `tendsto_card_div_pow_atTop_volume` where we
assume in addition that `x • s ⊆ y • s` whenever `0 < x ≤ y`. Then we get the same limit
`card (s ∩ x⁻¹ • (ι → ℤ)) / x ^ card ι → volume s` but the limit is over a real variable `x`.

-/

noncomputable section
Expand Down Expand Up @@ -186,7 +201,7 @@ theorem setFinite_index {s : Set (ι → ℝ)} (hs₁ : NullMeasurableSet s) (hs
(by simp only [Set.iUnion_subset_iff, Set.inter_subset_right, implies_true]) hs₂
· rw [Set.mem_setOf, Set.inter_eq_self_of_subset_left hν, volume_box]

/-- For `B : BoxIntegral.Box`, the set of indices of `unitPartition.Box` that are subsets of `B`.
/-- For `B : BoxIntegral.Box`, the set of indices of `unitPartition.box` that are subsets of `B`.
This is a finite set. These boxes cover `B` if it has integral vertices, see
`unitPartition.prepartition_isPartition`. -/
def admissibleIndex (B : Box ι) : Finset (ι → ℤ) := by
Expand Down Expand Up @@ -293,4 +308,180 @@ theorem prepartition_isPartition {B : Box ι} (hB : hasIntegralVertices B) :
rw [TaggedPrepartition.mem_toPrepartition, mem_prepartition_iff]
exact ⟨index n x, mem_admissibleIndex_of_mem_box n hB hx, rfl⟩

open Submodule Pointwise BigOperators

open scoped Pointwise

variable (c : ℝ) (s : Set (ι → ℝ)) (F : (ι → ℝ) → ℝ)

-- The image of `ι → ℤ` inside `ι → ℝ`
local notation "L" => span ℤ (Set.range (Pi.basisFun ℝ ι))
xroblot marked this conversation as resolved.
Show resolved Hide resolved

variable {n} in
theorem mem_smul_span_iff {v : ι → ℝ} :
v ∈ (n : ℝ)⁻¹ • L ↔ ∀ i, n * v i ∈ Set.range (algebraMap ℤ ℝ) := by
rw [ZSpan.smul _ (inv_ne_zero (NeZero.ne _)), Basis.mem_span_iff_repr_mem]
simp_rw [Basis.repr_isUnitSMul, Pi.basisFun_repr, Units.smul_def, Units.val_inv_eq_inv_val,
IsUnit.unit_spec, inv_inv, smul_eq_mul]

theorem tag_mem_smul_span (ν : ι → ℤ) :
xroblot marked this conversation as resolved.
Show resolved Hide resolved
tag n ν ∈ (n : ℝ)⁻¹ • L := by
refine mem_smul_span_iff.mpr fun i ↦ ⟨ν i + 1, ?_⟩
rw [tag_apply, div_eq_inv_mul, ← mul_assoc, mul_inv_cancel_of_invertible, one_mul, map_add,
map_one, eq_intCast]

theorem tag_index_eq_self_of_mem_smul_span {x : ι → ℝ} (hx : x ∈ (n : ℝ)⁻¹ • L) :
tag n (index n x) = x := by
rw [mem_smul_span_iff] at hx
ext i
obtain ⟨a, ha⟩ : ∃ a : ℤ, a = n * x i := hx i
rwa [tag_apply, index_apply, Int.cast_sub, Int.cast_one, sub_add_cancel, ← ha, Int.ceil_intCast,
div_eq_iff (NeZero.ne _), mul_comm]

theorem eq_of_mem_smul_span_of_index_eq_index {x y : ι → ℝ} (hx : x ∈ (n : ℝ)⁻¹ • L)
(hy : y ∈ (n : ℝ)⁻¹ • L) (h : index n x = index n y) : x = y := by
rw [← tag_index_eq_self_of_mem_smul_span n hx, ← tag_index_eq_self_of_mem_smul_span n hy, h]

theorem integralSum_eq_tsum_div {B : Box ι} (hB : hasIntegralVertices B) (hs₀ : s ≤ B) :
integralSum (Set.indicator s F) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))
(prepartition n B) = (∑' x : ↑(s ∩ (n : ℝ)⁻¹ • L), F x) / n ^ card ι := by
classical
unfold integralSum
have : Fintype ↑(s ∩ (n : ℝ)⁻¹ • L) := by
apply Set.Finite.fintype
rw [← coe_pointwise_smul, ZSpan.smul _ (inv_ne_zero (NeZero.ne _))]
exact ZSpan.setFinite_inter _ (B.isBounded.subset hs₀)
rw [tsum_fintype, Finset.sum_set_coe, Finset.sum_div, eq_comm]
simp_rw [Set.indicator_apply, apply_ite, BoxAdditiveMap.toSMul_apply, Measure.toBoxAdditive_apply,
smul_eq_mul, mul_zero, Finset.sum_ite, Finset.sum_const_zero, add_zero]
refine Finset.sum_bij (fun x _ ↦ box n (index n x)) (fun _ hx ↦ Finset.mem_filter.mpr ?_)
(fun _ hx _ hy h ↦ ?_) (fun I hI ↦ ?_) (fun _ hx ↦ ?_)
· rw [Set.mem_toFinset] at hx
refine ⟨mem_prepartition_boxes_iff.mpr
⟨index n _, mem_admissibleIndex_of_mem_box n hB (hs₀ hx.1), rfl⟩, ?_⟩
simp_rw [prepartition_tag n (mem_admissibleIndex_of_mem_box n hB (hs₀ hx.1)),
tag_index_eq_self_of_mem_smul_span n hx.2, hx.1]
· rw [Set.mem_toFinset] at hx hy
exact eq_of_mem_smul_span_of_index_eq_index n hx.2 hy.2 (box_injective n h)
· rw [Finset.mem_filter] at hI
refine ⟨(prepartition n B).tag I, Set.mem_toFinset.mpr ⟨hI.2, ?_⟩, box_index_tag_eq_self n hI.1⟩
rw [← box_index_tag_eq_self n hI.1, prepartition_tag n
(mem_admissibleIndex_of_mem_box n hB (hs₀ hI.2))]
exact tag_mem_smul_span _ _
· rw [Set.mem_toFinset] at hx
rw [volume_box, prepartition_tag n (mem_admissibleIndex_of_mem_box n hB (hs₀ hx.1)),
tag_index_eq_self_of_mem_smul_span n hx.2, ENNReal.toReal_div,
ENNReal.one_toReal, ENNReal.toReal_pow, ENNReal.toReal_nat, mul_comm_div, one_mul]

open Filter

/-- Let `s` be a bounded, measurable set of `ι → ℝ` whose frontier has zero volume and let `F`
be a continuous function. Then the limit as `n → ∞` of `∑ F x / n ^ card ι`, where the sum is
over the points in `s ∩ n⁻¹ • (ι → ℤ)`, tends to the integral of `F` over `s`. -/
theorem _root_.tendsto_tsum_div_pow_atTop_integral (hF : Continuous F) (hs₁ : IsBounded s)
(hs₂ : MeasurableSet s) (hs₃ : volume (frontier s) = 0) :
Tendsto (fun n : ℕ ↦ (∑' x : ↑(s ∩ (n : ℝ)⁻¹ • L), F x) / n ^ card ι)
atTop (nhds (∫ x in s, F x)) := by
obtain ⟨B, hB, hs₀⟩ := le_hasIntegralVertices_of_isBounded hs₁
refine Metric.tendsto_atTop.mpr fun ε hε ↦ ?_
have h₁ : ∃ C, ∀ x ∈ Box.Icc B, ‖Set.indicator s F x‖ ≤ C := by
obtain ⟨C₀, h₀⟩ := (Box.isCompact_Icc B).exists_bound_of_continuousOn hF.continuousOn
refine ⟨max 0 C₀, fun x hx ↦ ?_⟩
rw [Set.indicator]
split_ifs with hs
· exact le_max_of_le_right (h₀ x hx)
· exact norm_zero.trans_le <|le_max_left 0 _
have h₂ : ∀ᵐ x, ContinuousAt (s.indicator F) x := by
filter_upwards [compl_mem_ae_iff.mpr hs₃] with _ h
using (hF.continuousOn).continuousAt_indicator h
obtain ⟨r, hr₁, hr₂⟩ := (hasIntegral_iff.mp <|
AEContinuous.hasBoxIntegral (volume : Measure (ι → ℝ)) h₁ h₂
IntegrationParams.Riemann) (ε / 2) (half_pos hε)
refine ⟨⌈(r 0 0 : ℝ)⁻¹⌉₊, fun n hn ↦ lt_of_le_of_lt ?_ (half_lt_self_iff.mpr hε)⟩
have : NeZero n :=
⟨Nat.ne_zero_iff_zero_lt.mpr <| (Nat.ceil_pos.mpr (inv_pos.mpr (r 0 0).prop)).trans_le hn⟩
rw [← integralSum_eq_tsum_div _ s F hB hs₀, ← Measure.restrict_restrict_of_subset hs₀,
← integral_indicator hs₂]
refine hr₂ 0 _ ⟨?_, fun _ ↦ ?_, fun h ↦ ?_, fun h ↦ ?_⟩ (prepartition_isPartition _ hB)
· rw [show r 0 = fun _ ↦ r 0 0 from funext_iff.mpr (hr₁ 0 rfl)]
apply prepartition_isSubordinate n B
rw [one_div, inv_le_comm₀ (mod_cast (Nat.pos_of_neZero n)) (r 0 0).prop]
exact le_trans (Nat.le_ceil _) (Nat.cast_le.mpr hn)
· exact prepartition_isHenstock n B
· simp only [IntegrationParams.Riemann, Bool.false_eq_true] at h
· simp only [IntegrationParams.Riemann, Bool.false_eq_true] at h

/-- Let `s` be a bounded, measurable set of `ι → ℝ` whose frontier has zero volume. Then the limit
as `n → ∞` of `card (s ∩ n⁻¹ • (ι → ℤ)) / n ^ card ι` tends to the volume of `s`. This is a
special case of `tendsto_card_div_pow` with `F = 1`. -/
theorem _root_.tendsto_card_div_pow_atTop_volume (hs₁ : IsBounded s)
(hs₂ : MeasurableSet s) (hs₃ : volume (frontier s) = 0) :
Tendsto (fun n : ℕ ↦ (Nat.card ↑(s ∩ (n : ℝ)⁻¹ • L) : ℝ) / n ^ card ι)
atTop (nhds (volume s).toReal) := by
convert tendsto_tsum_div_pow_atTop_integral s (fun _ ↦ 1) continuous_const hs₁ hs₂ hs₃
· rw [tsum_const, nsmul_eq_mul, mul_one, Nat.cast_inj]
· rw [setIntegral_const, smul_eq_mul, mul_one]

private def tendsto_card_div_pow₁ {c : ℝ} (hc : c ≠ 0) :
↑(s ∩ c⁻¹ • L) ≃ ↑(c • s ∩ L) :=
Equiv.subtypeEquiv (Equiv.smulRight hc) (fun x ↦ by
simp_rw [Set.mem_inter_iff, Equiv.smulRight_apply, Set.smul_mem_smul_set_iff₀ hc,
← Set.mem_inv_smul_set_iff₀ hc])

private theorem tendsto_card_div_pow₂ (hs₁ : IsBounded s)
(hs₄ : ∀ ⦃x y : ℝ⦄, 0 < x → x ≤ y → x • s ⊆ y • s) {x y : ℝ} (hx : 0 < x) (hy : x ≤ y) :
Nat.card ↑(s ∩ x⁻¹ • L) ≤ Nat.card ↑(s ∩ y⁻¹ • L) := by
rw [Nat.card_congr (tendsto_card_div_pow₁ s hx.ne'),
Nat.card_congr (tendsto_card_div_pow₁ s (hx.trans_le hy).ne')]
refine Nat.card_mono ?_ ?_
· exact ZSpan.setFinite_inter _ (IsBounded.smul₀ hs₁ y)
· exact Set.inter_subset_inter_left _ <| hs₄ hx hy

private theorem tendsto_card_div_pow₃ (hs₁ : IsBounded s)
(hs₄ : ∀ ⦃x y : ℝ⦄, 0 < x → x ≤ y → x • s ⊆ y • s) :
∀ᶠ x : ℝ in atTop, (Nat.card ↑(s ∩ (⌊x⌋₊ : ℝ)⁻¹ • L) : ℝ) / x ^ card ι ≤
(Nat.card ↑(s ∩ x⁻¹ • L) : ℝ) / x ^ card ι := by
filter_upwards [eventually_ge_atTop 1] with x hx
gcongr
exact tendsto_card_div_pow₂ s hs₁ hs₄ (Nat.cast_pos.mpr (Nat.floor_pos.mpr hx))
(Nat.floor_le (zero_le_one.trans hx))

private theorem tendsto_card_div_pow₄ (hs₁ : IsBounded s)
(hs₄ : ∀ ⦃x y : ℝ⦄, 0 < x → x ≤ y → x • s ⊆ y • s) :
∀ᶠ x : ℝ in atTop, (Nat.card ↑(s ∩ x⁻¹ • L) : ℝ) / x ^ card ι ≤
(Nat.card ↑(s ∩ (⌈x⌉₊ : ℝ)⁻¹ • L) : ℝ) / x ^ card ι := by
filter_upwards [eventually_gt_atTop 0] with x hx
gcongr
exact tendsto_card_div_pow₂ s hs₁ hs₄ hx (Nat.le_ceil _)

private theorem tendsto_card_div_pow₅ :
(fun x ↦ (Nat.card ↑(s ∩ (⌊x⌋₊ : ℝ)⁻¹ • L) : ℝ) / ⌊x⌋₊ ^ card ι * (⌊x⌋₊ / x) ^ card ι)
=ᶠ[atTop] (fun x ↦ (Nat.card ↑(s ∩ (⌊x⌋₊ : ℝ)⁻¹ • L) : ℝ) / x ^ card ι) := by
filter_upwards [eventually_ge_atTop 1] with x hx
have : 0 < ⌊x⌋₊ := Nat.floor_pos.mpr hx
rw [div_pow, mul_div, div_mul_cancel₀ _ (by positivity)]

private theorem tendsto_card_div_pow₆ :
(fun x ↦ (Nat.card ↑(s ∩ (⌈x⌉₊ : ℝ)⁻¹ • L) : ℝ) / ⌈x⌉₊ ^ card ι * (⌈x⌉₊ / x) ^ card ι)
=ᶠ[atTop] (fun x ↦ (Nat.card ↑(s ∩ (⌈x⌉₊ : ℝ)⁻¹ • L) : ℝ) / x ^ card ι) := by
filter_upwards [eventually_ge_atTop 1] with x hx
have : 0 < ⌊x⌋₊ := Nat.floor_pos.mpr hx
rw [div_pow, mul_div, div_mul_cancel₀ _ (by positivity)]

/-- A version of `tendsto_card_div_pow_atTop_volume` for a real variable. -/
theorem _root_.tendsto_card_div_pow_atTop_volume' (hs₁ : IsBounded s)
(hs₂ : MeasurableSet s) (hs₃ : volume (frontier s) = 0)
(hs₄ : ∀ ⦃x y : ℝ⦄, 0 < x → x ≤ y → x • s ⊆ y • s) :
Tendsto (fun x : ℝ ↦ (Nat.card ↑(s ∩ x⁻¹ • L) : ℝ) / x ^ card ι)
atTop (nhds (volume s).toReal) := by
rw [show (volume s).toReal = (volume s).toReal * 1 ^ card ι by ring]
refine tendsto_of_tendsto_of_tendsto_of_le_of_le' ?_ ?_
(tendsto_card_div_pow₃ s hs₁ hs₄) (tendsto_card_div_pow₄ s hs₁ hs₄)
· refine Tendsto.congr' (tendsto_card_div_pow₅ s) (Tendsto.mul ?_ (Tendsto.pow ?_ _))
· exact Tendsto.comp (tendsto_card_div_pow_atTop_volume s hs₁ hs₂ hs₃) tendsto_nat_floor_atTop
· exact tendsto_nat_floor_div_atTop
· refine Tendsto.congr' (tendsto_card_div_pow₆ s) (Tendsto.mul ?_ (Tendsto.pow ?_ _))
· exact Tendsto.comp (tendsto_card_div_pow_atTop_volume s hs₁ hs₂ hs₃) tendsto_nat_ceil_atTop
· exact tendsto_nat_ceil_div_atTop

end BoxIntegral.unitPartition
4 changes: 4 additions & 0 deletions Mathlib/LinearAlgebra/Basis/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -359,6 +359,10 @@ theorem isUnitSMul_apply {v : Basis ι R M} {w : ι → R} (hw : ∀ i, IsUnit (
v.isUnitSMul hw i = w i • v i :=
unitsSMul_apply i

theorem repr_isUnitSMul {v : Basis ι R₂ M} {w : ι → R₂} (hw : ∀ i, IsUnit (w i)) (x : M) (i : ι) :
(v.isUnitSMul hw).repr x i = (hw i).unit⁻¹ • v.repr x i :=
repr_unitsSMul _ _ _ _

section Fin

/-- Let `b` be a basis for a submodule `N` of `M`. If `y : M` is linear independent of `N`
Expand Down
12 changes: 12 additions & 0 deletions Mathlib/Topology/ContinuousOn.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1416,6 +1416,18 @@ protected lemma Continuous.mulIndicator (hs : ∀ a ∈ frontier s, f a = 1) (hf
Continuous (mulIndicator s f) := by
classical exact hf.piecewise hs continuous_const

@[to_additive]
theorem ContinuousOn.continuousAt_mulIndicator (hf : ContinuousOn f (interior s)) {x : α}
(hx : x ∉ frontier s) :
ContinuousAt (s.mulIndicator f) x := by
rw [← Set.mem_compl_iff, compl_frontier_eq_union_interior] at hx
obtain h | h := hx
· have hs : interior s ∈ 𝓝 x := mem_interior_iff_mem_nhds.mp (by rwa [interior_interior])
exact ContinuousAt.congr (hf.continuousAt hs) <| Filter.eventuallyEq_iff_exists_mem.mpr
⟨interior s, hs, Set.eqOn_mulIndicator.symm.mono interior_subset⟩
· exact ContinuousAt.congr continuousAt_const <| Filter.eventuallyEq_iff_exists_mem.mpr
⟨sᶜ, mem_interior_iff_mem_nhds.mp h, Set.eqOn_mulIndicator'.symm⟩

end Indicator

theorem IsOpen.ite' (hs : IsOpen s) (hs' : IsOpen s')
Expand Down
Loading