Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix FA2 when using quantization for remaining models #28341

Merged
merged 3 commits into from
Jan 5, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion src/transformers/models/bart/modeling_bart.py
Original file line number Diff line number Diff line change
Expand Up @@ -382,8 +382,10 @@ def forward(

input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
Expand Down
6 changes: 4 additions & 2 deletions src/transformers/models/distilbert/modeling_distilbert.py
Original file line number Diff line number Diff line change
Expand Up @@ -322,11 +322,13 @@ def reshape(x: torch.Tensor) -> torch.Tensor:
# in fp32. (LlamaRMSNorm handles it correctly)

if query_states.dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_lin.weight.dtype
target_dtype = self.q_proj.weight.dtype
susnato marked this conversation as resolved.
Show resolved Hide resolved

logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
Expand Down
4 changes: 3 additions & 1 deletion src/transformers/models/gpt_neo/modeling_gpt_neo.py
Original file line number Diff line number Diff line change
Expand Up @@ -357,8 +357,10 @@ def forward(
# in fp32. (LlamaRMSNorm handles it correctly)

if query.dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
Expand Down
4 changes: 3 additions & 1 deletion src/transformers/models/gpt_neox/modeling_gpt_neox.py
Original file line number Diff line number Diff line change
Expand Up @@ -384,8 +384,10 @@ def forward(
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
input_dtype = query.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
Expand Down
4 changes: 3 additions & 1 deletion src/transformers/models/mbart/modeling_mbart.py
Original file line number Diff line number Diff line change
Expand Up @@ -372,8 +372,10 @@ def forward(

input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
Expand Down
4 changes: 3 additions & 1 deletion src/transformers/models/opt/modeling_opt.py
Original file line number Diff line number Diff line change
Expand Up @@ -363,8 +363,10 @@ def forward(
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
Expand Down
4 changes: 3 additions & 1 deletion src/transformers/models/phi/modeling_phi.py
Original file line number Diff line number Diff line change
Expand Up @@ -484,8 +484,10 @@ def forward(
# in fp32.

if query_states.dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
Expand Down
4 changes: 3 additions & 1 deletion src/transformers/models/whisper/modeling_whisper.py
Original file line number Diff line number Diff line change
Expand Up @@ -562,8 +562,10 @@ def forward(

input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
Expand Down