Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add protection for when kernel_quantizer is None #997

Merged
merged 3 commits into from
Jul 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 8 additions & 24 deletions hls4ml/converters/keras/qkeras.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,9 @@


def get_quantizer_from_config(keras_layer, quantizer_var):
quantizer_config = keras_layer['config'][f'{quantizer_var}_quantizer']
quantizer_config = keras_layer['config'].get(f'{quantizer_var}_quantizer', None)
if quantizer_config is None:
return None # No quantizer specified in the layer
if keras_layer['class_name'] == 'QBatchNormalization':
return QKerasQuantizer(quantizer_config)
elif 'binary' in quantizer_config['class_name']:
Expand All @@ -25,10 +27,7 @@ def parse_qdense_layer(keras_layer, input_names, input_shapes, data_reader):
layer, output_shape = parse_dense_layer(keras_layer, input_names, input_shapes, data_reader)

layer['weight_quantizer'] = get_quantizer_from_config(keras_layer, 'kernel')
if keras_layer['config']['bias_quantizer'] is not None:
layer['bias_quantizer'] = get_quantizer_from_config(keras_layer, 'bias')
else:
layer['bias_quantizer'] = None
layer['bias_quantizer'] = get_quantizer_from_config(keras_layer, 'bias')

return layer, output_shape

Expand All @@ -43,10 +42,7 @@ def parse_qconv_layer(keras_layer, input_names, input_shapes, data_reader):
layer, output_shape = parse_conv2d_layer(keras_layer, input_names, input_shapes, data_reader)

layer['weight_quantizer'] = get_quantizer_from_config(keras_layer, 'kernel')
if keras_layer['config']['bias_quantizer'] is not None:
layer['bias_quantizer'] = get_quantizer_from_config(keras_layer, 'bias')
else:
layer['bias_quantizer'] = None
layer['bias_quantizer'] = get_quantizer_from_config(keras_layer, 'bias')

return layer, output_shape

Expand All @@ -56,11 +52,7 @@ def parse_qdepthwiseqconv_layer(keras_layer, input_names, input_shapes, data_rea
layer, output_shape = parse_conv2d_layer(keras_layer, input_names, input_shapes, data_reader)

layer['depthwise_quantizer'] = get_quantizer_from_config(keras_layer, 'depthwise')

if keras_layer['config']['bias_quantizer'] is not None:
layer['bias_quantizer'] = get_quantizer_from_config(keras_layer, 'bias')
else:
layer['bias_quantizer'] = None
layer['bias_quantizer'] = get_quantizer_from_config(keras_layer, 'bias')

return layer, output_shape

Expand All @@ -76,11 +68,7 @@ def parse_qsepconv_layer(keras_layer, input_names, input_shapes, data_reader):

layer['depthwise_quantizer'] = get_quantizer_from_config(keras_layer, 'depthwise')
layer['pointwise_quantizer'] = get_quantizer_from_config(keras_layer, 'pointwise')

if keras_layer['config']['bias_quantizer'] is not None:
layer['bias_quantizer'] = get_quantizer_from_config(keras_layer, 'bias')
else:
layer['bias_quantizer'] = None
layer['bias_quantizer'] = get_quantizer_from_config(keras_layer, 'bias')

return layer, output_shape

Expand All @@ -93,11 +81,7 @@ def parse_qrnn_layer(keras_layer, input_names, input_shapes, data_reader):

layer['weight_quantizer'] = get_quantizer_from_config(keras_layer, 'kernel')
layer['recurrent_quantizer'] = get_quantizer_from_config(keras_layer, 'recurrent')

if keras_layer['config']['bias_quantizer'] is not None:
layer['bias_quantizer'] = get_quantizer_from_config(keras_layer, 'bias')
else:
layer['bias_quantizer'] = None
layer['bias_quantizer'] = get_quantizer_from_config(keras_layer, 'bias')

return layer, output_shape

Expand Down
32 changes: 32 additions & 0 deletions test/pytest/test_qkeras.py
Original file line number Diff line number Diff line change
Expand Up @@ -399,6 +399,38 @@ def test_qactivation_kwarg(randX_100_10, activation_quantizer, weight_quantizer)
assert sum(wrong) / len(wrong) <= 0.005


@pytest.mark.parametrize('backend', ['Vivado', 'Vitis', 'Quartus'])
@pytest.mark.parametrize('io_type', ['io_parallel', 'io_stream'])
def test_quantizer_parsing(randX_100_10, backend, io_type):
X = randX_100_10
X = np.round(X * 2**10) * 2**-10 # make it an exact ap_fixed<16,6>
model = Sequential()
model.add(
QDense(
8,
input_shape=(10,),
kernel_quantizer=None, # Incorrect usage, but shouldn't break hls4ml
kernel_initializer='ones',
bias_quantizer=None,
bias_initializer='zeros',
activation='quantized_relu(8, 0)',
)
)
model.compile()

config = hls4ml.utils.config_from_keras_model(model, granularity='name', default_precision='fixed<24,8>')
output_dir = str(test_root_path / f'hls4mlprj_qkeras_quant_parse_{backend}_{io_type}')
hls_model = hls4ml.converters.convert_from_keras_model(
model, hls_config=config, output_dir=output_dir, backend=backend, io_type=io_type
)
hls_model.compile()

y_qkeras = model.predict(X)
y_hls4ml = hls_model.predict(X)

np.testing.assert_array_equal(y_qkeras, y_hls4ml.reshape(y_qkeras.shape))


@pytest.fixture(scope='module')
def randX_100_8_8_1():
return np.random.rand(100, 8, 8, 1)
Expand Down
Loading