Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

WIP: Power Converter Benchmark #355

Closed
wants to merge 10 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -19,4 +19,6 @@ paper/paper.pdf
*.out
*.bbl
*.synctex.gz
*.log
*.log
Control Systems/v-infinite-horizon-pwer-converter/sdp.py
Control Systems/v-infinite-horizon-pwer-converter/vtailcost.py
2 changes: 2 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ version = "0.1.3"

[deps]
ArnoldiMethod = "ec485272-7323-5ecc-a04f-4719b315124d"
BlockDiagonals = "0a1fb500-61f7-11e9-3c65-f5ef3456f9f0"
Colors = "5ae59095-9a9b-59fe-a467-6f913c188581"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
DiscreteMarkovChains = "8abcb7ef-b365-4f7b-ac38-56893fb62f9f"
Expand All @@ -18,6 +19,7 @@ IntervalArithmetic = "d1acc4aa-44c8-5952-acd4-ba5d80a2a253"
IntervalLinearAlgebra = "92cbe1ac-9c24-436b-b0c9-5f7317aedcd5"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
LaTeXStrings = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
LatexPrint = "d2208f48-c256-5759-9089-c25ed2a93924"
LazySets = "b4f0291d-fe17-52bc-9479-3d1a343d9043"
Libtiff_jll = "89763e89-9b03-5906-acba-b20f662cd828"
LightXML = "9c8b4983-aa76-5018-a973-4c85ecc9e179"
Expand Down
1 change: 1 addition & 0 deletions docs/Project.toml
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
[deps]
BlockDiagonals = "0a1fb500-61f7-11e9-3c65-f5ef3456f9f0"
CDDLib = "3391f64e-dcde-5f30-b752-e11513730f60"
Clarabel = "61c947e1-3e6d-4ee4-985a-eec8c727bd6e"
Colors = "5ae59095-9a9b-59fe-a467-6f913c188581"
Expand Down
159 changes: 159 additions & 0 deletions docs/src/examples/solvers/Power Converter.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
using Test #src
# # Example: DC-DC converter solved by [Naive abstraction](https://github.com/dionysos-dev/Dionysos.jl/blob/master/docs/src/manual/manual.md#solvers).
#
#md # [![Binder](https://mybinder.org/badge_logo.svg)](@__BINDER_ROOT_URL__/generated/DC-DC converter.ipynb)
#md # [![nbviewer](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/generated/DC-DC converter.ipynb)
#
# We consider a boost DC-DC converter which has been widely studied from the point of view of hybrid control, see for example in [1, V.A],[2],[3].
# This is a **safety problem** for a **switching system**.
#
# ![Boost DC-DC converter.](https://github.com/dionysos-dev/Dionysos.jl/blob/master/docs/assets/dcdcboost.jpg?raw=true)
#
# The state of the system is given by $x(t) = \begin{bmatrix} i_l(t) & v_c(t) \end{bmatrix}^\top$.
# The switching system has two modes consisting in two-dimensional affine dynamics:
# ```math
# \dot{x} = f_p(x) = A_p x + b_p,\quad p=1,2
# ```
# with
# ```math
# A_1 = \begin{bmatrix} -\frac{r_l}{x_l} &0 \\ 0 & -\frac{1}{x_c}\frac{1}{r_0+r_c} \end{bmatrix}, A_2= \begin{bmatrix} -\frac{1}{x_l}\left(r_l+\frac{r_0r_c}{r_0+r_c}\right) & -\frac{1}{x_l}\frac{r_0}{r_0+r_c} \\ \frac{1}{x_c}\frac{r_0}{r_0+r_c} & -\frac{1}{x_c}\frac{1}{r_0+r_c} \end{bmatrix}, b_1 = b_2 = \begin{bmatrix} \frac{v_s}{x_l}\\0\end{bmatrix}.
# ```
# The goal is to design a controller to keep the state of the system in a safety region around the reference desired value, using as input only the switching
# signal. In order to study the concrete system and its symbolic abstraction in a unified framework, we will solve the problem
# for the sampled system with a sampling time $\tau$. For the construction of the relations in the abstraction, it is necessary to over-approximate attainable sets of
# a particular cell. In this example, we consider the use of a growth bound function [4, VIII.2, VIII.5] which is one of the possible methods to over-approximate
# attainable sets of a particular cell based on the state reach by its center.
#

# First, let us import [StaticArrays](https://github.com/JuliaArrays/StaticArrays.jl) and [Plots](https://github.com/JuliaPlots/Plots.jl).

import CDDLib
import GLPK
import OSQP
using JuMP
import Pavito
import HiGHS
import Ipopt

# At this point, we import the useful Dionysos sub-modules.
using Dionysos
const DI = Dionysos
const UT = DI.Utils
const DO = DI.Domain
const ST = DI.System
const SY = DI.Symbolic
const OP = DI.Optim
const AB = OP.Abstraction

# ### Definition of the system
# we can import the module containing the DCDC problem like this
#include(joinpath(dirname(dirname(pathof(Dionysos))), "problems", "pc-osqp.jl"))
include(joinpath(dirname(dirname(pathof(Dionysos))), "problems", "pc-osqp-rmaps.jl"))

problem = PCOSQPRM.problem(CDDLib.Library(), Float64);

# Finally, we select the method presented in [2] as our optimizer

qp_solver = optimizer_with_attributes(
OSQP.Optimizer,
"eps_abs" => 1e-8,
"eps_rel" => 1e-8,
"max_iter" => 100000,
MOI.Silent() => true,
);

mip_solver = optimizer_with_attributes(HiGHS.Optimizer, MOI.Silent() => true);

cont_solver = optimizer_with_attributes(Ipopt.Optimizer, MOI.Silent() => true);

miqp_solver = optimizer_with_attributes(
Pavito.Optimizer,
"mip_solver" => mip_solver,
"cont_solver" => cont_solver,
MOI.Silent() => true,
);

algo = optimizer_with_attributes(
OP.BemporadMorari.Optimizer{Float64},
"continuous_solver" => qp_solver,
"mixed_integer_solver" => miqp_solver,
"indicator" => false,
"log_level" => 0,
);

# and use it to solve the given problem, with the help of the abstraction layer
# MathOptInterface provided by [JuMP](https://github.com/jump-dev/JuMP.jl)
optimizer = MOI.instantiate(algo)
MOI.set(optimizer, MOI.RawOptimizerAttribute("problem"), problem)
MOI.optimize!(optimizer)

# We check the solver time
MOI.get(optimizer, MOI.SolveTimeSec())

# the termination status
termination = MOI.get(optimizer, MOI.TerminationStatus())

# the objective value
objective_value = MOI.get(optimizer, MOI.ObjectiveValue())

##@test objective_value ≈ 11.38 atol = 1e-2 #src

# and recover the corresponding continuous trajectory
xu = MOI.get(optimizer, ST.ContinuousTrajectoryAttribute());

# ## A little bit of data visualization now:

using Plots
using Polyhedra
using HybridSystems
using Suppressor

#Initialize our canvas
fig = plot(;
aspect_ratio = :equal,
xtickfontsize = 10,
ytickfontsize = 10,
guidefontsize = 16,
titlefontsize = 14,
);
xlims!(-10.5, 3.0)
ylims!(-10.5, 3.0)

#Plot the discrete modes
for mode in states(problem.system)
t =
(problem.system.ext[:modes] in [mode, mode + 11]) ? "XT" :
(
mode == problem.system.ext[:q_A] ? "A" :
(
mode == problem.system.ext[:q_B] ? "B" :
mode <= 11 ? string(mode) : string(mode - 11)
)
)
set = stateset(problem.system, mode)
plot!(set; color = :white)
UT.text_in_set_plot!(fig, set, t)
end

#Plot obstacles
for i in eachindex(problem.system.ext[:obstacles])
set = problem.system.ext[:obstacles][i]
plot!(set; color = :black, opacity = 0.5)
UT.text_in_set_plot!(fig, set, "O$i")
end

#Plot trajectory
x0 = problem.initial_set[2]
x_traj = [x0, xu.x...]
plot!(fig, UT.DrawTrajectory(x_traj));

#Plot initial point
plot!(fig, UT.DrawPoint(x0); color = :blue)
annotate!(fig, x0[1], x0[2] - 0.5, "x0")

# ### References
#
# 1. Gol, E. A., Lazar, M., & Belta, C. (2013). Language-guided controller synthesis for linear systems. IEEE Transactions on Automatic Control, 59(5), 1163-1176.
# 1. Bemporad, A., & Morari, M. (1999). Control of systems integrating logic, dynamics, and constraints. Automatica, 35(3), 407-427.
# 1. Legat B., Bouchat J., Jungers R. M. (2021). Abstraction-based branch and bound approach to Q-learning for hybrid optimal control. 3rd Annual Learning for Dynamics & Control Conference, 2021.
# 1. Legat B., Bouchat J., Jungers R. M. (2021). Abstraction-based branch and bound approach to Q-learning for hybrid optimal control. https://www.codeocean.com/. https://doi.org/10.24433/CO.6650697.v1.
203 changes: 203 additions & 0 deletions problems/pc-osqp-rmaps.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
module PCOSQPRM
using Test

using Dionysos: Dionysos
const DI = Dionysos
const UT = DI.Utils
const PR = DI.Problem

using FillArrays
using Polyhedra
using MathematicalSystems, HybridSystems
using SemialgebraicSets
using LinearAlgebra

using CDDLib: CDDLib

function system(lib, T::Type)

# Generate the automaton nodes
possible_values = [[-1, 0, 1], [-1, 0, 1], [-1, 0, 1], [0, 1], [0, 1], [0, 1]]
nvars = length(possible_values)

## generate all possible combinations of the values
function generate_combinations(possible_values, depth)
if depth == 1
return [[v] for v in possible_values[1]]
end
return [
[v; c...] for v in possible_values[1] for c in generate_combinations(possible_values[2:end], depth - 1)
]
end

## generate all possible combinations of the values
nodes = generate_combinations(possible_values, nvars)
nnodes = length(nodes)

## domains
function rect(x_l, x_u)
r = HalfSpace([-1], -T(x_l)) ∩ HalfSpace([1], T(x_u))
return polyhedron(r, lib)
end
function rect(x_l, x_u, y_l, y_u)
r =
HalfSpace([-1, 0], -T(x_l)) ∩ HalfSpace([1, 0], T(x_u)) ∩
HalfSpace([0, -1], -T(y_l)) ∩ HalfSpace([0, 1], T(y_u))
return polyhedron(r, lib)
end

pX = rect(-10,10)
pU = rect(-1, 1)

#Automaton:
automaton = GraphAutomaton(nnodes)
indexB = Int[]

#Resetmaps: (guards + reset)
A = T[
0.9999981424449595 9.91220860939534e-12 3.4481569821196496e-7 9.205526977551878e-5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-9.91220860939534e-12 0.9999981424449595 -9.205526977551878e-5 3.4481569821196496e-7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.1535327064414276e-7 -2.644213073804883e-12 0.9999999080158245 -2.455696808386769e-5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.644213073804883e-12 2.1535327064414276e-7 2.455696808386769e-5 0.9999999080158245 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.9999999996930378 -2.477749999746475e-5 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 2.477749999746475e-5 0.9999999996930378 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99875 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0012499999999999734 0.99875 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
]

B = T[
6.256252307659102e-5 -3.128126153811649e-5 -3.128126153847453e-5 0.0 0.0 0.0
-2.0671108273679513e-16 5.418073430928138e-5 -5.418073430907468e-5 0.0 0.0 0.0
6.7365306173215874e-12 -3.368357184796113e-12 -3.3681734325413444e-12 0.0 0.0 0.0
1.0608933096199221e-16 5.833953603352774e-12 -5.8340596926953345e-12 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.013888888888888593 0.013888888888888593 0.013888888888888593
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
]

C = T[
1.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.5 5.5
]

#ResetMaps = Vector{ConstrainedLinearControlDiscreteSystem}(undef, length(domains)^2)
##cU = polyhedron(HalfSpace(T[0, 0, -1], 2) ∩ HalfSpace(T[0, 0, 1], 2), lib)

function is_enabled(from, to)
from_node = nodes[from]
to_node = nodes[to]

# On the first 3 elements of the nodes, we cannot go from -1 to 1 or 1 to -1
for i in 1:3
if from_node[i] == -1 && to_node[i] == 1
return false
end
if from_node[i] == 1 && to_node[i] == -1
return false
end
end

return true
end

ntransitions = 0
function maybe_add_transition(from, to)
#global ntransitions
if is_enabled(from, to)
ntransitions += 1
add_transition!(automaton, from, to, ntransitions)
append!(indexB, from)
end
end
for from in 1:nnodes, to in 1:nnodes
maybe_add_transition(from, to)
end

#modes = [ConstrainedContinuousIdentitySystem(12, i) for i in 1:nnodes]
modes = [ConstrainedContinuousIdentitySystem(12, FullSpace()) for i in 1:nnodes]

#L290: ERROR: DimensionMismatch: matrix A has dimensions (6,6), vector B has length 0
#resetmaps = [ConstrainedAffineMap(A, B*nodes[indexB[i]], FullSpace()) for i in 1:ntransitions]
resetmaps = Fill(ConstrainedAffineMap(A, B*nodes[indexB[i]], FullSpace()), ntransitions)
#resetmaps = Fill(ConstrainedLinearControlMap(A, B, FullSpace(), pU), ntransitions)

system = HybridSystem(
automaton,
# Modes
modes,
# Reset maps
resetmaps,
# Switching
Fill(ControlledSwitching(), ntransitions),
#Fill(AutonomousSwitching(), ntransitions),
)

system.ext[:modes] = nmodes(system)
system.ext[:q_C] = C
system.ext[:transitions] = ntransitions

return system
end

""""
problem(lib, T::Type, gamma=0.95, x_0 = [1.0, -6.0], N = 11, tail_cost::Bool = false)

This function create the system with `PCOSQPRM.system`.

Then, we define initial conditions (continuous and discrete states) to this system
and set `N` as horizon, i.e., the number of allowed time steps.

We instantiate our Optimal Control Problem by defining the state and tail costs.
Notice that `state_cost` is defined to be `sum(gamma^t * norm(Cx_t))` for each time step `t`
and the `tail_cost` is defined to be `gamma^N V(x_N)` that we considering constant in this version.

Notice that we used `Fill` for all `N` time steps as we consider time-invariant costs.
"""
function problem(
lib = CDDLib.Library(),
T::Type = Float64;
gamma = 0.95,
q0 = 1,
x_0 = [1 for _ in 1:12], #The first state is the initial state #[0 for i in 1:12],
N = 3,
tail_cost::Bool = false,
)
sys = system(lib, T)
#if tail_cost
# transition_cost = Fill(UT.ZeroFunction(), nmodes(sys))
#end


#state_cost = UT.QuadraticControlFunction(sys.ext[:q_C]' * sys.ext[:q_C])
state_cost = UT.QuadraticControlFunction(ones(T, 6, 6))

#x_0 = [0 for _ in 1:sys.ext[:modes]]
#problem = PR.OptimalControlProblem(sys, (q0, x_0), sys.ext[:modes], nothing, nothing, N)

#==#
problem = PR.OptimalControlProblem(
sys,
(q0, x_0),
sys.ext[:modes],
#state_cost,
Fill(Fill(state_cost, sys.ext[:modes]), N),#Fill(Fill(state_cost, sys.ext[:modes]),N),
#transition_cost,
Fill(Fill(UT.ZeroFunction(), sys.ext[:transitions]), N),
N,
)
#==#
return problem
end

end

Loading
Loading