Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

-adding eval episodes #209

Merged
merged 2 commits into from
Sep 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
File renamed without changes.
22 changes: 16 additions & 6 deletions assume/common/outputs.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from mango import Role
from pandas.api.types import is_numeric_dtype
from sqlalchemy import inspect, text
from sqlalchemy.exc import OperationalError, ProgrammingError
from sqlalchemy.exc import DataError, OperationalError, ProgrammingError

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -43,6 +43,7 @@ def __init__(
export_csv_path: str = "",
save_frequency_hours: int = None,
learning_mode: bool = False,
evaluation_mode: bool = False,
):
super().__init__()

Expand All @@ -56,16 +57,23 @@ def __init__(
self.p = Path(self.export_csv_path, simulation_id)
shutil.rmtree(self.p, ignore_errors=True)
self.p.mkdir(parents=True)

self.db = db_engine

self.learning_mode = learning_mode
self.evaluation_mode = evaluation_mode

# learning
# get episode number if in learning or evaluation mode
self.episode = None
if self.learning_mode:
if self.learning_mode or self.evaluation_mode:
episode = self.simulation_id.split("_")[-1]
if episode.isdigit():
self.episode = int(episode)

# check if episode=0 and delete all similar runs
if self.episode == 0:
self.del_similar_runs()

# contruct all timeframe under which hourly values are written to excel and db
self.start = start
self.end = end
Expand Down Expand Up @@ -99,7 +107,7 @@ def delete_db_scenario(self, simulation_id):
logger.debug("deleted %s rows from %s", rowcount, table_name)

def del_similar_runs(self):
query = text("select distinct simulation from market_meta")
query = text("select distinct simulation from rl_params")

try:
with self.db.begin() as db:
Expand Down Expand Up @@ -173,10 +181,12 @@ def write_rl_params(self, rl_params):
df = pd.DataFrame.from_records(rl_params, index="datetime")
if df.empty:
return

df["simulation"] = self.simulation_id
df["learning_mode"] = self.learning_mode
# get characters after last "_" of simulation id string
df["evaluation_mode"] = self.evaluation_mode
df["episode"] = self.episode

self.write_dfs["rl_params"].append(df)

def write_market_results(self, market_meta):
Expand Down Expand Up @@ -357,7 +367,7 @@ async def on_stop(self):
for query in queries:
try:
df = pd.read_sql(query, self.db)
except (OperationalError, ProgrammingError):
except (OperationalError, DataError):
continue
except Exception as e:
logger.error("could not read query: %s", e)
Expand Down
58 changes: 38 additions & 20 deletions assume/common/scenario_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -230,8 +230,10 @@
inputs_path: str,
scenario: str,
study_case: str,
disable_learning: bool = False,
perform_learning: bool = True,
perform_evaluation: bool = False,
episode: int = 0,
eval_episode: int = 0,
load_learned_path: str = "",
):
"""Load a scenario from a given path. Raises: ValueError: If the scenario or study case is not found.
Expand All @@ -248,11 +250,10 @@

# load the config file
path = f"{inputs_path}/{scenario}"
with open(f"{path}/config.yaml", "r") as f:
config = yaml.safe_load(f)
if not study_case:
study_case = list(config.keys())[0]
config = config[study_case]
config = yaml.safe_load(open(f"{path}/config.yaml", "r"))
if not study_case:
study_case = list(config.keys())[0]

Check warning on line 255 in assume/common/scenario_loader.py

View check run for this annotation

Codecov / codecov/patch

assume/common/scenario_loader.py#L255

Added line #L255 was not covered by tests
config = config[study_case]
logger.info(f"Starting Scenario {scenario}/{study_case} from {inputs_path}")

world.reset()
Expand Down Expand Up @@ -298,8 +299,10 @@
learning_config: LearningConfig = config.get("learning_config", {})
bidding_strategy_params = config.get("bidding_strategy_params", {})

if disable_learning:
learning_config["learning_mode"] = False
learning_config["learning_mode"] = (
config.get("learning_mode", False) and perform_learning
)
learning_config["evaluation_mode"] = perform_evaluation

if "load_learned_path" not in learning_config.keys():
if load_learned_path:
Expand All @@ -312,6 +315,9 @@
if learning_config.get("learning_mode", False):
sim_id = f"{sim_id}_{episode}"

if learning_config.get("evaluation_mode", False):
sim_id = f"{sim_id}_eval_{eval_episode}"

# add forecast provider
logger.info("Adding forecast")
forecaster = CsvForecaster(
Expand Down Expand Up @@ -515,8 +521,10 @@
inputs_path: str,
scenario: str,
study_case: str,
disable_learning: bool = False,
perform_learning: bool = True,
perform_evaluation: bool = False,
episode: int = 0,
eval_episode: int = 0,
load_learned_path="",
):
"""
Expand All @@ -537,8 +545,10 @@
inputs_path=inputs_path,
scenario=scenario,
study_case=study_case,
disable_learning=disable_learning,
perform_learning=perform_learning,
perform_evaluation=perform_evaluation,
episode=episode,
eval_episode=eval_episode,
load_learned_path=load_learned_path,
)
)
Expand All @@ -564,28 +574,30 @@
actors_and_critics = None
world.output_role.del_similar_runs()

eval_episode = 1
for episode in tqdm(
range(world.learning_role.training_episodes),
range(1, world.learning_role.training_episodes + 1),
desc="Training Episodes",
):
# TODO normally, loading twice should not create issues, somehow a scheduling issue is raised currently
if episode:
if episode != 1:
load_scenario_folder(
world,
inputs_path,
scenario,
study_case,
perform_learning=True,
episode=episode,
disable_learning=False,
)

# give the newly created rl_agent the buffer that we stored from the beginning
world.learning_role.create_actors_and_critics(
actors_and_critics=actors_and_critics
)
world.learning_role.buffer = buffer
world.learning_role.episodes_done = episode

if episode + 1 > world.learning_role.episodes_collecting_initial_experience:
if episode > world.learning_role.episodes_collecting_initial_experience:
world.learning_role.turn_off_initial_exploration()

world.run()
Expand All @@ -594,9 +606,10 @@
world.learning_role.training_episodes,
world.learning_config.get("validation_episodes_interval", 5),
)
if (episode + 1) % validation_interval == 0 and (
episode + 1
) > world.learning_role.episodes_collecting_initial_experience:
if (
episode % validation_interval == 0
and episode > world.learning_role.episodes_collecting_initial_experience
):
old_path = world.learning_config["load_learned_path"]
new_path = f"{old_path}_eval"
# save validation params in validation path
Expand All @@ -609,7 +622,9 @@
inputs_path,
scenario,
study_case,
disable_learning=True,
perform_learning=False,
perform_evaluation=True,
eval_episode=eval_episode,
load_learned_path=new_path,
)
world.run()
Expand All @@ -620,13 +635,16 @@
# save new best params for simulation
best_reward = avg_reward
world.learning_role.save_params(directory=old_path)

eval_episode += 1

world.reset()

# in load_scenario_folder_async, we initiate new container and kill old if present
# as long as we do not skip setup container should be handled correctly
# if enough initial experience was collected according to specifications in learning config
# turn off initial exploration and go into full learning mode
if episode + 1 >= world.learning_role.episodes_collecting_initial_experience:
if episode >= world.learning_role.episodes_collecting_initial_experience:
world.learning_role.turn_off_initial_exploration()

# container shutdown implicitly with new initialisation
Expand All @@ -640,5 +658,5 @@
inputs_path,
scenario,
study_case,
disable_learning=True,
perform_learning=False,
)
2 changes: 1 addition & 1 deletion assume/common/units_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -398,7 +398,7 @@ def write_learning_to_output(self, start: datetime, marketconfig: MarketConfig):
db_aid = self.context.data_dict.get("learning_output_agent_id")
db_addr = self.context.data_dict.get("learning_output_agent_addr")

if db_aid and db_addr:
if db_aid and db_addr and output_agent_list:
self.context.schedule_instant_acl_message(
receiver_id=db_aid,
receiver_addr=db_addr,
Expand Down
20 changes: 12 additions & 8 deletions assume/world.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,8 +143,11 @@ async def setup(

async def setup_learning(self):
self.bidding_params.update(self.learning_config)

# initiate learning if the learning mode is on and hence we want to learn new strategies
self.learning_mode = self.learning_config.get("learning_mode", False)
self.evaluation_mode = self.learning_config.get("evaluation_mode", False)

if self.learning_mode:
# if so, we initate the rl learning role with parameters
from assume.reinforcement_learning.learning_role import Learning
Expand Down Expand Up @@ -182,6 +185,7 @@ async def setup_output_agent(self, simulation_id: str, save_frequency_hours: int
export_csv_path=self.export_csv_path,
save_frequency_hours=save_frequency_hours,
learning_mode=self.learning_mode,
evaluation_mode=self.evaluation_mode,
)
if self.same_process:
output_agent = RoleAgent(
Expand Down Expand Up @@ -325,14 +329,14 @@ def add_market_operator(
market_operator_agent.markets = []

# after creation of an agent - we set additional context params
market_operator_agent._role_context.data_dict = {
"output_agent_addr": None
if self.learning_mode
else self.output_agent_addr[0],
"output_agent_id": None
if self.learning_mode
else self.output_agent_addr[1],
}
market_operator_agent._role_context.data_dict = {}
if not self.learning_mode and not self.evaluation_mode:
market_operator_agent._role_context.data_dict.update(
{
"output_agent_addr": self.output_agent_addr[0],
"output_agent_id": self.output_agent_addr[1],
}
)
self.market_operators[id] = market_operator_agent

def add_market(
Expand Down
Loading