-
Notifications
You must be signed in to change notification settings - Fork 0
/
u_net.py
123 lines (100 loc) · 3.67 KB
/
u_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
from torch import nn
import torch.nn.functional as F
class UNet(nn.Module):
def __init__(
self,
in_channels=1,
n_classes=2,
depth=5,
wf=6,
padding=False,
batch_norm=False,
up_mode='upconv',
dropout = 0
):
super(UNet, self).__init__()
assert up_mode in ('upconv', 'upsample')
self.padding = padding
self.depth = depth
prev_channels = in_channels
self.down_path = nn.ModuleList()
for i in range(depth):
self.down_path.append(
Conv(prev_channels, 2 ** (wf + i))
)
prev_channels = 2 ** (wf + i)
self.up_path = nn.ModuleList()
for i in reversed(range(depth - 1)):
self.up_path.append(
UNetUpBlock(prev_channels, 2 ** (wf + i), up_mode, padding, batch_norm,dropout)
)
prev_channels = 2 ** (wf + i)
self.last = nn.Conv1d(prev_channels, n_classes, kernel_size=1)
def forward(self, x,*args):
blocks = []
for i, down in enumerate(self.down_path):
x = down(x)
if i != len(self.down_path) - 1:
blocks.append(x)
x = F.max_pool1d(x, 2)
for i, up in enumerate(self.up_path):
x = up(x, blocks[-i - 1])
return self.last(x)
class UNetUpBlock(nn.Module):
def __init__(self, in_size, out_size, up_mode, padding, batch_norm,dropout):
super(UNetUpBlock, self).__init__()
if up_mode == 'upconv':
self.up = nn.Sequential(
nn.ConvTranspose1d(in_size, out_size, kernel_size=3, stride=2,padding=1,output_padding=1),
nn.LeakyReLU())
elif up_mode == 'upsample':
self.up = nn.Sequential(
nn.Upsample(mode='bilinear', scale_factor=2),
nn.Conv2d(in_size, out_size, kernel_size=1),
)
self.conv_block = nn.Sequential(nn.Conv1d(in_size,out_size,kernel_size=3,padding=1),
nn.LeakyReLU())
def forward(self, x, bridge):
up = self.up(x)
out = torch.cat((up,bridge),dim=1)
out = self.conv_block(out)
return out
class Dense(nn.Module):
def __init__(self, C_in, C_out):
super(Dense, self).__init__()
self.squeeze_1 = nn.Conv1d(C_in, C_out, 1, 1, 0)
self.squeeze_5 = nn.Conv1d(C_in, C_out, 5, 1, 2)
self.squeeze_9 = nn.Conv1d(C_in, C_out, 9, 1, 4)
self.squeeze_15 = nn.Conv1d(C_in,C_out, 15, 1, 7)
def forward(self, x):
x_1 = self.squeeze_1(x)
x_3 = self.squeeze_5(x)
x_7 = self.squeeze_9(x)
x_11 = self.squeeze_15(x)
concat = torch.cat((x_1,x_3,x_7,x_11),dim=1)
concat = F.leaky_relu(concat)
return concat
class Conv(nn.Module):
def __init__(self, C_in, C_out):
super(Conv, self).__init__()
self.squeeze_3 = nn.Conv1d(C_in, C_out, 3, 1, 1)
# self.squeeze_5 = nn.Conv1d(C_in, C_out, 5, 1, 2)
# self.squeeze_7 = nn.Conv1d(C_in, C_out, 9, 1, 4)
# self.squeeze_15 = nn.Conv1d(C_in,C_out, 15, 1, 7)
def forward(self, x):
x_1 = self.squeeze_3(x)
# x_3 = self.squeeze_5(x)
# x_7 = self.squeeze_9(x)
# x_11 = self.squeeze_15(x)
# concat = torch.cat((x_1,x_7),dim=1)
concat = F.leaky_relu(x_1)
return concat
if __name__=="__main__":
import numpy as np
model = UNet(in_channels=4,n_classes=2,depth=3,wf=5,padding=True,batch_norm=True)
inp = np.random.randn(8,4,600)
inp = torch.from_numpy(inp).float()
out = model.forward(inp)
# print(out.shape)
print(model)