-
Notifications
You must be signed in to change notification settings - Fork 0
/
focal_loss.py
70 lines (53 loc) · 2.36 KB
/
focal_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import torch.nn as nn
import torch.nn.functional as F
class FocalLoss(nn.Module):
def __init__(self, gamma=0, alpha=None, size_average=True):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
if isinstance(alpha, (float, int)): self.alpha = torch.Tensor([alpha, 1 - alpha])
if isinstance(alpha, list): self.alpha = torch.Tensor(alpha)
self.size_average = size_average
def forward(self, input, target, ignore_index=-100):
if input.dim() > 2:
input = input.view(input.size(0), input.size(1), -1) # N,C,H,W => N,C,H*W
input = input.transpose(1, 2) # N,C,H*W => N,H*W,C
input = input.contiguous().view(-1, input.size(2)) # N,H*W,C => N*H*W,C
target = target.view(-1, 1)
target = target.long()
ignore_mask = (target != ignore_index).squeeze()
target = target[ignore_mask]
input = input[ignore_mask]
logpt = F.log_softmax(input, dim=1)
logpt = logpt.gather(1,target)
logpt = logpt.view(-1)
pt = logpt.exp()
if self.alpha is not None:
if self.alpha.type() != input.data.type():
self.alpha = self.alpha.type_as(input.data)
at = self.alpha.gather(0, target.data.view(-1))
logpt = logpt * at
loss = -1 * (1 - pt)**self.gamma * logpt
if self.size_average: return loss.mean()
else: return loss.sum()
class MSELoss(nn.Module):
def __init__(self,weights=None):
super(MSELoss,self).__init__()
self.weights = weights
def forward(self,input,target,ignore_index=-100):
if input.dim()>2:
input = input.transpose(1, 2) # N,C,L => N,L,C
input = input.contiguous().view(-1, input.size(2)) # N,L,C => N*L,C
target = target.view(-1, 1)
ignore_mask = (target != ignore_index).squeeze()
target = target[ignore_mask].squeeze()
input = input[ignore_mask].squeeze()
if self.weights is not None:
if self.weights.type() != input.data.type():
self.weights = self.weights.type_as(input.data)
at = self.weights.gather(0, target.data.view(-1).long())
loss = (target - input)**2
print(loss[230:240].data)
loss = (at*loss).mean()
return loss.mean()