Data: train: 2500 birds RGB (and a bit gray) images (different sizes, min_size = (120, 140)); target: 50 classes; scoring: categorical_accuracy.
train_size | test_size | kernel | score | training time |
---|---|---|---|---|
2000 | 500 | RBF | < 0.02 | ~ 5-10 min |
2000 | 500 | linear | 0.11 | ~ 10 min |
SVM(sklearm.svm.SVC) on features extracted with penult layer of pretrained VGG16 on ImageNet, train reshaped (224, 224)
extracting time ~ 60 min
train_size | test_size | kernel | score | training time |
---|---|---|---|---|
2000 | 500 | RBF | < 0.02 | ~ 10 sec |
2250 | 250 | linear | 0.71 | ~ 10 sec |
2000 | 500 | linear | 0.70 | ~ 10 sec |
1000 | 1500 | linear | 0.61 | ~ 10 sec |
500 | 2000 | linear | 0.53 | ~ 10 sec |
250 | 2250 | linear | 0.42 | ~ 10 sec |
100 | 2400 | linear | 0.28 | ~ 10 sec |
Architecture:
Convolution2D(64, 3, 3, border_mode="same", activation="relu")
MaxPooling2D(pool_size=(3, 3))
Convolution2D(126, 3, 3, border_mode="same", activation="relu")
MaxPooling2D(pool_size=(3, 3))
Flatten()
Dense(250, activation="relu")
Dense(51, activation="softmax")
nb_epoch=10, batch_size=32
train_size | test_size | score | training time |
---|---|---|---|
2000 | 500 | ~ 0.02 | ~ 70 min |
Other architectures give the same result.
Keras 2-dense-layers network on features extracted with penult layer of pretrained VGG16 on ImageNet, train reshaped (224, 224)
extracting time ~ 60 min nb_epoch=200, batch_size=60
train_size | test_size | score | training time |
---|---|---|---|
2250 | 250 | ~ 0.75 | < 2 min |
2000 | 500 | ~ 0.73 | < 2 min |
1750 | 750 | ~ 0.71 | < 2 min |
1500 | 1000 | ~ 0.70 | < 2 min |
1250 | 1250 | ~ 0.66 | < 2 min |
1000 | 1500 | ~ 0.64 | < 2 min |
750 | 1750 | ~ 0.60 | < 2 min |
500 | 2000 | ~ 0.54 | < 2 min |
250 | 2250 | ~ 0.40 | < 2 min |
174 | 2326 | ~ 0.33 | < 2 min |
99 | 2401 | ~ 0.27 | < 2 min |
24 | 2476 | ~ 0.10 | < 2 min |
Keras 2-dense-layers network on features extracted with penult layer of pretrained VGG16 on ImageNet, train reshaped (224, 224)
10 most important features with RandomForestClassifier.
train_size | test_size | score | training time |
---|---|---|---|
2000 | 500 | ~ 0.32 | < 1 min |