Skip to content

Latest commit

 

History

History
67 lines (56 loc) · 2.46 KB

README.md

File metadata and controls

67 lines (56 loc) · 2.46 KB

Finetuning results

Data: train: 2500 birds RGB (and a bit gray) images (different sizes, min_size = (120, 140)); target: 50 classes; scoring: categorical_accuracy.

SVM(sklearm.svm.SVC) on train reshaped (100, 100)

train_size test_size kernel score training time
2000 500 RBF < 0.02 ~ 5-10 min
2000 500 linear 0.11 ~ 10 min

SVM(sklearm.svm.SVC) on features extracted with penult layer of pretrained VGG16 on ImageNet, train reshaped (224, 224)

extracting time ~ 60 min

train_size test_size kernel score training time
2000 500 RBF < 0.02 ~ 10 sec
2250 250 linear 0.71 ~ 10 sec
2000 500 linear 0.70 ~ 10 sec
1000 1500 linear 0.61 ~ 10 sec
500 2000 linear 0.53 ~ 10 sec
250 2250 linear 0.42 ~ 10 sec
100 2400 linear 0.28 ~ 10 sec

Keras simple convolutional network on train reshaped (224, 224)

Architecture:

Convolution2D(64, 3, 3, border_mode="same", activation="relu")
MaxPooling2D(pool_size=(3, 3))
Convolution2D(126, 3, 3, border_mode="same", activation="relu")
MaxPooling2D(pool_size=(3, 3))
Flatten()
Dense(250, activation="relu")
Dense(51, activation="softmax")

nb_epoch=10, batch_size=32

train_size test_size score training time
2000 500 ~ 0.02 ~ 70 min

Other architectures give the same result.

Keras 2-dense-layers network on features extracted with penult layer of pretrained VGG16 on ImageNet, train reshaped (224, 224)

extracting time ~ 60 min nb_epoch=200, batch_size=60

train_size test_size score training time
2250 250 ~ 0.75 < 2 min
2000 500 ~ 0.73 < 2 min
1750 750 ~ 0.71 < 2 min
1500 1000 ~ 0.70 < 2 min
1250 1250 ~ 0.66 < 2 min
1000 1500 ~ 0.64 < 2 min
750 1750 ~ 0.60 < 2 min
500 2000 ~ 0.54 < 2 min
250 2250 ~ 0.40 < 2 min
174 2326 ~ 0.33 < 2 min
99 2401 ~ 0.27 < 2 min
24 2476 ~ 0.10 < 2 min

Keras 2-dense-layers network on features extracted with penult layer of pretrained VGG16 on ImageNet, train reshaped (224, 224)

10 most important features with RandomForestClassifier.

train_size test_size score training time
2000 500 ~ 0.32 < 1 min