-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add search best actions script
- Loading branch information
Showing
1 changed file
with
111 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
import argparse | ||
import json | ||
|
||
import gymnasium as gym | ||
from stable_baselines3 import PPO | ||
|
||
from gymnasium_search_race.envs.search_race import get_test_ids | ||
|
||
|
||
def search_best_actions_on_test_id( | ||
model_path: str, | ||
env_id: str, | ||
test_id: int, | ||
total_timesteps: int = 200_000, | ||
) -> list[list[int]]: | ||
env = gym.make(env_id, test_id=test_id) | ||
model = PPO.load(model_path, env=env) | ||
|
||
model.tensorboard_log = None | ||
model.verbose = 0 | ||
model.learn(total_timesteps=total_timesteps, progress_bar=True) | ||
|
||
actions = [] | ||
observation, info = env.reset() | ||
terminated = truncated = False | ||
|
||
while not terminated and not truncated: | ||
action, _ = model.predict(observation=observation, deterministic=True) | ||
actions.append( | ||
[ | ||
round(action[0] * info["max_rotation_per_turn"]), | ||
round(action[1] * info["car_max_thrust"]), | ||
] | ||
) | ||
observation, _reward, terminated, truncated, info = env.step(action) | ||
|
||
env.close() | ||
|
||
return actions | ||
|
||
|
||
def search_best_actions( | ||
model_path: str, | ||
env_id: str, | ||
total_timesteps: int = 200_000, | ||
) -> dict[int, list[list[int]]]: | ||
total_length = 0 | ||
actions_per_test_id = {} | ||
|
||
for test_id in get_test_ids(): | ||
actions = search_best_actions_on_test_id( | ||
model_path=model_path, | ||
env_id=env_id, | ||
test_id=test_id, | ||
total_timesteps=total_timesteps, | ||
) | ||
length = len(actions) | ||
print(f"Test {test_id:03}: {length}") | ||
total_length += length | ||
actions_per_test_id[test_id] = actions | ||
|
||
print("Total:", total_length) | ||
|
||
return actions_per_test_id | ||
|
||
|
||
def write_best_actions( | ||
path: str, | ||
actions: dict[int, list[list[int]]], | ||
) -> None: | ||
with open(path, "w", encoding="utf-8") as json_file: | ||
json.dump(actions, json_file) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser( | ||
description="Search best actions for Search Race", | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||
) | ||
parser.add_argument( | ||
"--model-path", | ||
required=True, | ||
help="path to model file", | ||
) | ||
parser.add_argument( | ||
"--env", | ||
default="gymnasium_search_race:gymnasium_search_race/SearchRace-v1", | ||
help="environment id", | ||
) | ||
parser.add_argument( | ||
"--total-timesteps", | ||
default=200_000, | ||
type=int, | ||
help="total timesteps to train", | ||
) | ||
parser.add_argument( | ||
"--output-path", | ||
help="path to output JSON file", | ||
) | ||
args = parser.parse_args() | ||
best_actions = search_best_actions( | ||
model_path=args.model_path, | ||
env_id=args.env, | ||
total_timesteps=args.total_timesteps, | ||
) | ||
|
||
if args.output_path: | ||
write_best_actions( | ||
path=args.output_path, | ||
actions=best_actions, | ||
) |