Skip to content

Quentin18/gymnasium-search-race

Repository files navigation

Gymnasium Search Race

Build Python Package Python PyPI PyPI Downloads pre-commit Code style: black Imports: isort

Gymnasium environments for the Search Race CodinGame optimization puzzle and Mad Pod Racing CodinGame bot programming game.

demo.mp4
Action Space Box([-1, 0], [1, 1], float64)
Observation Space Box([0, 0, 0, 0, 0, 0, 0, -1, -1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], float64)
import gymnasium.make("gymnasium_search_race:gymnasium_search_race/SearchRace-v1")

Installation

To install gymnasium-search-race with pip, execute:

pip install gymnasium_search_race

From source:

git clone https://github.com/Quentin18/gymnasium-search-race
cd gymnasium-search-race/
pip install -e .

Environment

Action Space

The action is a ndarray with 2 continuous variables:

  • The rotation angle between -18 and 18 degrees, normalized between -1 and 1.
  • The thrust between 0 and 200, normalized between 0 and 1.

Observation Space

The observation is a ndarray of 10 continuous variables:

  • 1 if the next checkpoint is the last one, 0 otherwise.
  • The x and y coordinates of the next checkpoint.
  • The x and y coordinates of the checkpoint after next checkpoint.
  • The x and y coordinates of the car.
  • The horizontal speed vx and vertical speed vy of the car.
  • The facing angle of the car.

The values are normalized between 0 and 1, or -1 and 1 if negative values are allowed.

Reward

The goal is to visit all checkpoints as quickly as possible, as such the agent is penalised with a reward of -0.1 for each timestep. When a checkpoint is visited, the agent is awarded with a reward of 1000/total_checkpoints.

Starting State

The starting state is generated by choosing a random CodinGame test case.

Episode End

The episode ends if either of the following happens:

  1. Termination: The car visit all checkpoints before the time is out.
  2. Truncation: Episode length is greater than 600.

Arguments

  • test_id: test case id to generate the checkpoints (see choices here). The default value is None which selects a test case randomly when the reset method is called.
import gymnasium as gym

gym.make("gymnasium_search_race:gymnasium_search_race/SearchRace-v1", test_id=1)

Version History

  • v1: Add boolean to indicate if the next checkpoint is the last checkpoint in observation
  • v0: Initial version

Discrete environment

The SearchRaceDiscrete environment is similar to the SearchRace environment except the action space is discrete.

import gymnasium as gym

gym.make("gymnasium_search_race:gymnasium_search_race/SearchRaceDiscrete-v1", test_id=1)

Action Space

There are 74 discrete actions corresponding to the combinations of angles from -18 to 18 degrees and thrust 0 and 200.

Version History

  • v1: Add all angles in action space
  • v0: Initial version

Mad Pod Racing

Runner

The MadPodRacing and MadPodRacingDiscrete environments can be used to train a runner for the Mad Pod Racing CodinGame bot programming game. They are similar to the SearchRace and SearchRaceDiscrete environments except the following differences:

  • The maximum thrust value is 100 instead of 200.
  • The maps are generated the same way Codingame generates them.
  • The car position is rounded and not truncated.
import gymnasium as gym

gym.make("gymnasium_search_race:gymnasium_search_race/MadPodRacing-v0")
gym.make("gymnasium_search_race:gymnasium_search_race/MadPodRacingDiscrete-v0")
mad_pod_racing_demo.mp4

Blocker

The MadPodRacingBlocker environment can be used to train a blocker for the Mad Pod Racing CodinGame bot programming game.

import gymnasium as gym

gym.make("gymnasium_search_race:gymnasium_search_race/MadPodRacingBlocker-v0")
mad_pod_racing_blocker_demo.mp4

Usage

You can use RL Baselines3 Zoo to train and evaluate agents:

pip install rl_zoo3

Train an Agent

The hyperparameters are defined in hyperparams/ppo.yml.

To train a PPO agent for the Search Race game, execute:

python -m rl_zoo3.train \
  --algo ppo \
  --env gymnasium_search_race/SearchRace-v1 \
  --tensorboard-log logs \
  --eval-freq 20000 \
  --eval-episodes 10 \
  --gym-packages gymnasium_search_race \
  --conf-file hyperparams/ppo.yml \
  --progress

For the Mad Pod Racing game, you can add an opponent with the opponent_path argument:

python -m rl_zoo3.train \
  --algo ppo \
  --env gymnasium_search_race/MadPodRacingBlocker-v0 \
  --tensorboard-log logs \
  --eval-freq 20000 \
  --eval-episodes 10 \
  --gym-packages gymnasium_search_race \
  --env-kwargs "opponent_path:'rl-trained-agents/ppo/gymnasium_search_race-MadPodRacing-v0_1/best_model.zip'" \
  --conf-file hyperparams/ppo.yml \
  --progress

Enjoy a Trained Agent

To see a trained agent in action on random test cases, execute:

python -m rl_zoo3.enjoy \
  --algo ppo \
  --env gymnasium_search_race/SearchRace-v1 \
  --n-timesteps 1000 \
  --deterministic \
  --gym-packages gymnasium_search_race \
  --load-best \
  --progress

Run Test Cases

To run test cases with a trained agent, execute:

python -m scripts.run_test_cases \
  --path rl-trained-agents/ppo/gymnasium_search_race-SearchRace-v1_1/best_model.zip \
  --env gymnasium_search_race:gymnasium_search_race/SearchRace-v1 \
  --record-video \
  --record-metrics

Record a Video of a Trained Agent

To record a video of a trained agent on Mad Pod Racing, execute:

python -m scripts.record_video \
  --path rl-trained-agents/ppo/gymnasium_search_race-MadPodRacing-v0_1/best_model.zip \
  --env gymnasium_search_race:gymnasium_search_race/MadPodRacing-v0

For Mad Pod Racing Blocker, execute:

python -m scripts.record_video \
  --path rl-trained-agents/ppo/gymnasium_search_race-MadPodRacingBlocker-v0_1/best_model.zip \
  --opponent-path rl-trained-agents/ppo/gymnasium_search_race-MadPodRacing-v0_1/best_model.zip \
  --env gymnasium_search_race:gymnasium_search_race/MadPodRacingBlocker-v0

Tests

To run tests, execute:

pytest

Citing

To cite the repository in publications:

@misc{gymnasium-search-race,
  author = {Quentin Deschamps},
  title = {Gymnasium Search Race},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/Quentin18/gymnasium-search-race}},
}

References

Assets

Author

Quentin Deschamps