Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Set OptimizerResult.optimizer in Optimizer.minimize #1525

Merged
merged 1 commit into from
Nov 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion pypesto/optimize/ess/ess.py
Original file line number Diff line number Diff line change
Expand Up @@ -401,7 +401,6 @@ def _create_result(self) -> pypesto.Result:
for i, optimizer_result in enumerate(self.local_solutions):
i_result += 1
optimizer_result.id = f"Local solution {i}"
optimizer_result.optimizer = str(self.local_optimizer)
result.optimize_result.append(optimizer_result)

if self._result_includes_refset:
Expand Down
37 changes: 25 additions & 12 deletions pypesto/optimize/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ def __init__(self, optimizer: str):
def hierarchical_decorator(minimize):
"""Add inner parameters to the optimizer result.

Default decorator for the minimize() method.
Default decorator for the :meth:`Optimizer.minimize` method.
"""

@wraps(minimize)
Expand Down Expand Up @@ -81,7 +81,7 @@ def wrapped_minimize(
def history_decorator(minimize):
"""Initialize and extract information stored in the history.

Default decorator for the minimize() method.
Default decorator for the :meth:`Optimizer.minimize` method.
"""

@wraps(minimize)
Expand Down Expand Up @@ -140,7 +140,11 @@ def wrapped_minimize(

logger.error(f"start {id} failed:\n{trace}")
result = OptimizerResult(
x0=x0, exitflag=-1, message=str(err), id=id
x0=x0,
exitflag=-1,
message=str(err),
id=id,
optimizer=str(self),
)
else:
raise
Expand All @@ -163,7 +167,7 @@ def wrapped_minimize(
def time_decorator(minimize):
"""Measure time of optimization.

Default decorator for the minimize() method to take time.
Default decorator for the :meth:`Optimizer.minimize` method to take time.
Currently, the method time.time() is used, which measures
the wall-clock time.
"""
Expand Down Expand Up @@ -196,8 +200,8 @@ def wrapped_minimize(
def fix_decorator(minimize):
"""Include also fixed parameters in the result arrays of minimize().

Default decorator for the minimize() method (nans will be inserted in the
derivatives).
Default decorator for the :meth:`Optimizer.minimize` method (nans will be
inserted in the derivatives).
"""

@wraps(minimize)
Expand Down Expand Up @@ -523,6 +527,7 @@ def fun(x):
hess=getattr(res, "hess", None),
exitflag=res.status,
message=res.message,
optimizer=str(self),
)

return optimizer_result
Expand Down Expand Up @@ -612,7 +617,10 @@ def minimize(

# the ipopt return object is a scipy.optimize.OptimizeResult
return OptimizerResult(
x=ret.x, exitflag=ret.status, message=ret.message
x=ret.x,
exitflag=ret.status,
message=ret.message,
optimizer=str(self),
)

def is_least_squares(self):
Expand All @@ -630,7 +638,7 @@ def __init__(self, options: dict = None):
if self.options is None:
self.options = DlibOptimizer.get_default_options(self)
elif "maxiter" not in self.options:
raise KeyError("Dlib options are missing the key word " "maxiter.")
raise KeyError("Dlib options are missing the keyword maxiter.")

def __repr__(self) -> str:
rep = f"<{self.__class__.__name__}"
Expand Down Expand Up @@ -677,7 +685,7 @@ def get_fval_vararg(*x):
0.002,
)

optimizer_result = OptimizerResult()
optimizer_result = OptimizerResult(optimizer=str(self))

return optimizer_result

Expand Down Expand Up @@ -737,7 +745,9 @@ def minimize(
problem.objective.get_fval, lb, ub, **self.options
)

optimizer_result = OptimizerResult(x=np.array(xopt), fval=fopt)
optimizer_result = OptimizerResult(
x=np.array(xopt), fval=fopt, optimizer=str(self)
)

return optimizer_result

Expand Down Expand Up @@ -821,7 +831,7 @@ def minimize(
)

optimizer_result = OptimizerResult(
x=np.array(result[0]), fval=result[1]
x=np.array(result[0]), fval=result[1], optimizer=str(self)
)

return optimizer_result
Expand Down Expand Up @@ -901,7 +911,7 @@ def minimize(
)

optimizer_result = OptimizerResult(
x=np.array(result.x), fval=result.fun
x=np.array(result.x), fval=result.fun, optimizer=str(self)
)

return optimizer_result
Expand Down Expand Up @@ -1019,6 +1029,7 @@ def successively_working_fval(swarm: np.ndarray) -> np.ndarray:
optimizer_result = OptimizerResult(
x=pos,
fval=float(cost),
optimizer=str(self),
)

return optimizer_result
Expand Down Expand Up @@ -1249,6 +1260,7 @@ def nlopt_objective(x, grad):
fval=opt.last_optimum_value(),
message=msg,
exitflag=opt.last_optimize_result(),
optimizer=str(self),
)

return optimizer_result
Expand Down Expand Up @@ -1433,6 +1445,7 @@ def minimize(
hess=opt.hess,
message=msg,
exitflag=opt.exitflag,
optimizer=str(self),
)

return optimizer_result
Expand Down
1 change: 0 additions & 1 deletion pypesto/optimize/task.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,6 @@ def execute(self) -> OptimizerResult:
history_options=self.history_options,
optimize_options=self.optimize_options,
)
optimizer_result.optimizer = str(self.optimizer)

if not self.optimize_options.report_hess:
optimizer_result.hess = None
Expand Down
1 change: 1 addition & 0 deletions test/optimize/test_optimize.py
Original file line number Diff line number Diff line change
Expand Up @@ -308,6 +308,7 @@ def check_minimize(problem, library, solver, allow_failed_starts=False):
]:
assert np.isfinite(result.optimize_result.list[0]["fval"])
assert result.optimize_result.list[0]["x"] is not None
assert result.optimize_result.list[0]["optimizer"] is not None


def test_trim_results(problem):
Expand Down