Gazebo simulations for KELO ROBILE robots
In addition to a few ROS dependencies, this package also depends on the following packages provided by KELO-robotics:
Assuming you have a catkin workspace at ~/catkin_ws
, execute the below commands to install the simulator and its dependencies
cd ~/catkin_ws/src
git clone https://github.com/kelo-robotics/kelo_tulip.git
git clone https://github.com/kelo-robotics/robile_description.git
git clone https://github.com/kelo-robotics/robile_gazebo.git
cd ~/catkin_ws
rosdep install --from-paths src --ignore-src -r -y
catkin build kelo_tulip # you will need to enter your password for the kelo_tulip build to complete
catkin build robile_description robile_gazebo
source ~/catkin_ws/devel/setup.bash
To start the gazebo simulator, use one of the launch files defined in the launch/ directory as follows:
roslaunch robile_gazebo 4_wheel_platform.launch
You can then publish command velocities on the ros topic /cmd_vel
to move the robot around. For example, to move the robot forward with 0.5 m/s velocity, execute the below command in a new terminal:
rostopic pub /cmd_vel geometry_msgs/Twist "linear:
x: 0.5
y: 0.0
z: 0.0
angular:
x: 0.0
y: 0.0
z: 0.0" -r 10
The kelo_tulip
platform controller requires information about every continuous (or movable) joint in all the connected KELO Drives. Moreover, it sends control data for every hub wheel. This can potentially increase the simulation load on weaker computers. If the goal of simulation is to move the robot around without worrying about the platform controller used, then kelo_tulip
can be switched off and the more simpler gazebo_ros_planar_move platform controller can be used. To start the simulation with the gazebo_ros_planar_move
instead of kelo_tulip
use the below command:
roslaunch robile_gazebo 4_wheel_platform.launch use_kelo_tulip:=false
You can add a laser scanner to the root by editing the robile description and addting the following lines, for example in the robile_gaebo.xacro file
<!-- sensors -->
<xacro:include filename="$(find robile_description)/urdf/sensors/hokuyo_urg04_laser.urdf.xacro"/>
<!-- base laser front -->
<xacro:hokuyo_urg04_laser name="base_laser_front" parent="base" ros_topic="scan_front" update_rate="10" min_angle="-1.57" max_angle="1.57">
<origin xyz="0.3 0 0.3" rpy="0 0 0"/>
</xacro:hokuyo_urg04_laser>
You also need to install the gazebo package to simulate the laser scanner
sudo apt install ros-$ROS_DISTRO-gazebo-ros-pkgs
Now if you launch you will have an additional topic /scan_front
in rostopic list.
The teleop_twist_keyboard ROS package can be used to simplify controlling the motion of the robot. This requires a one time installation of the teleop_twist_keyboard
package using the below command:
sudo apt install ros-$ROS_DISTRO-teleop-twist-keyboard
source /opt/ros/$ROS_DISTRO/setup.bash
Then start the teleop_twist_keyboard.py
node using the command rosrun teleop_twist_keyboard teleop_twist_keyboard.py
and move the robot as per the instructions displayed on the terminal. Below is an example of the output after running the node:
rosrun teleop_twist_keyboard teleop_twist_keyboard.py
Reading from the keyboard and Publishing to Twist!
---------------------------
Moving around:
u i o
j k l
m , .
For Holonomic mode (strafing), hold down the shift key:
---------------------------
U I O
J K L
M < >
t : up (+z)
b : down (-z)
anything else : stop
q/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
CTRL-C to quit
currently: speed 0.5 turn 1.0
Several arguments can be passed when launching the simulator. A complete list of supported roslaunch arguments can be found in the launch/platform_independent/robile_gazebo.launch file. We list a few most important ones here.
Argument name | Type | Default | Description |
---|---|---|---|
platform_max_lin_vel | float | 1.0 | Maximum linear velocity the platform can achieve in the XY plane (in m/s) |
platform_max_ang_vel | float | 1.0 | Maximum angular velocity the platform can achieve along the Z axis (in rad/s) |
init_pos_x | float | 0.0 | Spawn position of robot along the world X-axis |
init_pos_y | float | 0.0 | Spawn position of robot along the world Y-axis |
init_yaw | float | 0.0 | Spawn orientation of robot along the world Z-axis |
gazebo_gui | boolean | true | Start the Gazebo simulation GUI |
start_rviz | boolean | true | Start RViz with a predefined RViz configuration file |
For example to change the spawn position of the robot to (2.0, 3.0)
, and disable the Gazebo GUI, use the below command:
roslaunch robile_gazebo 4_wheel_platform.launch init_pos_x:=2.0 init_pos_y:=3.0 gazebo_gui:=false
In this section we describe the procedure to simulate custom ROBILE platform configurations.
Simulating a custom platform, requires defining the robot configuration in a URDF file. This must be done in the robile_description package and detailed instructions for the same are available here.
Lets assume our custom platform config is called simple_config
(continuing from the robile_description tutorial). Follow the below steps to add ros-controllers for the custom platform.
- Add a new file called
simple_config.yaml
in the directory config/ros_controller/. This file name must match the name of the platform defined in the robile_description package. - Add the following block of code to the file to create a joint_state_controller.
# Publish all joint states ----------------------------------- joint_state_controller: type: joint_state_controller/JointStateController publish_rate: 50 # Velocity Controllers -----------------------------------------
- For every
robile_active_wheel
module defined in the platform configuration filerobile_description/robots/simple_config.urdf.xacro
, include the below block of code in the YAML file. Replace the<ROBILE_MODULE_NAME>
with the actual name defined for the ROBILE module in the URDF file.<ROBILE_MODULE_NAME>_left_hub_wheel_controller: type: effort_controllers/JointVelocityController joint: <ROBILE_MODULE_NAME>_drive_left_hub_wheel_joint pid: {p: 100.0, i: 10.0, d: 0.01} <ROBILE_MODULE_NAME>_right_hub_wheel_controller: type: effort_controllers/JointVelocityController joint: <ROBILE_MODULE_NAME>_drive_right_hub_wheel_joint pid: {p: 100.0, i: 10.0, d: 0.01}
- A complete
config/ros_controller/simple_config.yaml
should look something like the one shown below:# Publish all joint states ----------------------------------- joint_state_controller: type: joint_state_controller/JointStateController publish_rate: 50 # Velocity Controllers ----------------------------------------- robile_3_left_hub_wheel_controller: type: effort_controllers/JointVelocityController joint: robile_3_drive_left_hub_wheel_joint pid: {p: 100.0, i: 10.0, d: 0.01} robile_3_right_hub_wheel_controller: type: effort_controllers/JointVelocityController joint: robile_3_drive_right_hub_wheel_joint pid: {p: 100.0, i: 10.0, d: 0.01} robile_4_left_hub_wheel_controller: type: effort_controllers/JointVelocityController joint: robile_4_drive_left_hub_wheel_joint pid: {p: 100.0, i: 10.0, d: 0.01} robile_4_right_hub_wheel_controller: type: effort_controllers/JointVelocityController joint: robile_4_drive_right_hub_wheel_joint pid: {p: 100.0, i: 10.0, d: 0.01}
A platform specific launch file can be defined as follows:
- Add a new launch file called
simple_config.launch
in the launch/ directory. - Add the following code block to the launch file:
<?xml version="1.0"?> <launch> <!-- Platform specific arguments must be defined here --> <include file="$(find robile_gazebo)/launch/platform_independent/robile_gazebo.launch" pass_all_args="true"/> </launch>
- Add an argument to specify the name of the platform configuration file. The name must exactly match the platform config URDF file name which is defined in the
robile_description/robots/
directory. In our example this would besimple_config
.<arg name="platform_config" value="simple_config"/>
- Add an argument to specify if
kelo_tulip
must be used as the platform controller by default. If this is set to false, all the wheel and pivot joints will be treated as fixed and thegazebo_ros_planar_move
plugin will be used as the platform controller.<arg name="use_kelo_tulip" default="true"/>
- Finally list all the hub wheel controller names defined in the
config/ros_controller/simple_config.yaml
file as follows:<arg name="hub_wheel_controller_list" value="robile_3_left_hub_wheel_controller robile_3_right_hub_wheel_controller robile_4_left_hub_wheel_controller robile_4_right_hub_wheel_controller" />
- The complete ros launch file should look something like the one shown below:
<?xml version="1.0"?> <launch> <!-- Platform specific arguments must be defined here --> <arg name="platform_config" value="simple_config"/> <arg name="use_kelo_tulip" default="true"/> <arg name="hub_wheel_controller_list" value="robile_3_left_hub_wheel_controller robile_3_right_hub_wheel_controller robile_4_left_hub_wheel_controller robile_4_right_hub_wheel_controller" /> <include file="$(find robile_gazebo)/launch/platform_independent/robile_gazebo.launch" pass_all_args="true"/> </launch>