Skip to content

Commit

Permalink
Merge branch 'feature/restructure' of https://github.com/Boehringer-I…
Browse files Browse the repository at this point in the history
…ngelheim/BayesianMCPMod into feature/restructure
  • Loading branch information
wojcieko committed Oct 13, 2023
2 parents acd3f82 + cedb075 commit cce6014
Showing 1 changed file with 152 additions and 152 deletions.
304 changes: 152 additions & 152 deletions tests/testthat/test-bootstrapping.R
Original file line number Diff line number Diff line change
@@ -1,152 +1,152 @@
# # Test cases
# test_that("test getBootsrapBands", {
# library(clinDR)
# library(dplyr)
#
# data("metaData")
# testdata <- as.data.frame(metaData)
# dataset <- filter(testdata, bname == "VIAGRA")
# histcontrol <- filter(dataset, dose == 0, primtime == 12, indication == "ERECTILE DYSFUNCTION")
#
# ##Create MAP Prior
# hist_data <- data.frame(
# trial = c(1, 2, 3, 4),
# est = histcontrol$rslt,
# se = histcontrol$se,
# sd = histcontrol$sd,
# n = histcontrol$sampsize)
#
# sd_tot <- with(hist_data, sum(sd * n) / sum(n))
#
#
# gmap <- RBesT::gMAP(
# formula = cbind(est, se) ~ 1 | trial,
# weights = hist_data$n,
# data = hist_data,
# family = gaussian,
# beta.prior = cbind(0, 100 * sd_tot),
# tau.dist = "HalfNormal",
# tau.prior = cbind(0, sd_tot / 4))
#
# prior_ctr <- RBesT::robustify(
# priormix = RBesT::automixfit(gmap),
# weight = 0.5,
# mean = 1.4,
# sigma = sd_tot)
#
# #RBesT::ess(prior_ctr)
#
# ## derive prior for treatment
# ## weak informative using same parameters as for robustify component
# prior_trt <- RBesT::mixnorm(
# comp1 = c(w = 1, m = 1.4, n = 1),
# sigma = sd_tot,
# param = "mn")
# dose_levels <- c(0, 50, 100, 200)
# ## combine priors in list
# prior_list <- c(list(prior_ctr), rep(list(prior_trt), times = length(dose_levels[-1])))
#
# #Pre-Specification (B)MCPMod
#
# ## candidate models for MCPMod
# # linear function - no guestimates needed
# exp <- DoseFinding::guesst(d = 50,
# p = c(0.2),
# model = "exponential",
# Maxd = max(dose_levels))
# emax <- DoseFinding::guesst(d = 100,
# p = c(0.9),
# model = "emax")
#
#
# mods <- DoseFinding::Mods(
# linear = NULL,
# emax = emax,
# exponential = exp,
# doses = dose_levels,
# maxEff = 10,
# placEff = 1.4)
#
# #Simulation of new trial
# ##Note: This part will be simplified and direct results from one trial will be used
# mods_sim <- DoseFinding::Mods(
# emax = emax,
# doses = dose_levels,
# maxEff = 12,
# placEff = 1.4)
#
# n_patients <- c(50, 50, 50, 50)
# data <- simulateData(
# n_patients = n_patients,
# dose_levels = dose_levels,
# sd = sd_tot,
# mods = mods_sim,
# n_sim = 1)
#
# data_emax <- data[, c("simulation", "dose", "emax")]
# names(data_emax)[3] <- "response"
#
# posterior_emax <- getPosterior(
# data = data_emax,
# prior_list = prior_list)
#
# #Evaluation of Bayesian MCPMod
#
# contr_mat <- DoseFinding::optContr(
# models = mods,
# doses = dose_levels,
# w = n_patients)
# ##Calculation of critical value can be done with critVal function
# crit_val_equal <- DoseFinding:::critVal(contr_mat$corMat, alpha = 0.05, df = 0, alternative = "one.sided")
# crit_pval <- pnorm(crit_val_equal)
#
# ess_prior <- round(unlist(lapply(prior_list, RBesT::ess)))
#
# ### Evaluation of Bayesian MCPMod
# contr_mat_prior <- DoseFinding::optContr(
# models = mods,
# doses = dose_levels,
# w = n_patients + ess_prior)
#
# BMCP_result <- BMCPMod(
# posteriors_list = list(posterior_emax),
# contr_mat = contr_mat_prior,
# crit_prob = crit_pval)
#
# BMCP_result
#
# #Model fit
# #This part is currently not working
# post_observed <- posterior_emax
# model_shapes <- c("linear", "emax", "exponential")
#
# # Option a) Simplified approach by using frequentist idea
# fit_simple <- getModelFits(
# models = model_shapes,
# dose_levels = dose_levels,
# posterior = post_observed,
# simple = TRUE)
#
# # Option b) Making use of the complete posterior distribution
# fit <- getModelFits(
# models = model_shapes,
# dose_levels = dose_levels,
# posterior = post_observed,
# simple = FALSE)
#
# result_simple <- getBootsrapBands(fit_simple)
# result <- getBootsrapBands(fit)
# expect_type(result_simple, "data.frame")
# expect_type(result, "data.frame")
#
# result_2_simple <- getBootsrapBands(fit_simple, n_samples = 1e2, alpha = c(0.1, 0.9), avg_fit = FALSE, dose_seq = c(1, 2, 3))
# result_2 <- getBootsrapBands(fit, n_samples = 1e2, alpha = c(0.1, 0.9), avg_fit = FALSE, dose_seq = c(1, 2, 3))
# expect_type(result_2_simple, "data.frame")
# expect_type(result_2, "data.frame")
#
# result_3_simple <- getBootsrapBands(fit_simple, dose_seq = NULL)
# result_3 <- getBootsrapBands(fit, dose_seq = NULL)
# expect_type(result_3_simple, "data.frame")
# expect_type(result_3, "data.frame")
# })
#
# Test cases
test_that("test getBootsrapBands", {
library(clinDR)
library(dplyr)

data("metaData")
testdata <- as.data.frame(metaData)
dataset <- filter(testdata, bname == "VIAGRA")
histcontrol <- filter(dataset, dose == 0, primtime == 12, indication == "ERECTILE DYSFUNCTION")

##Create MAP Prior
hist_data <- data.frame(
trial = c(1, 2, 3, 4),
est = histcontrol$rslt,
se = histcontrol$se,
sd = histcontrol$sd,
n = histcontrol$sampsize)

sd_tot <- with(hist_data, sum(sd * n) / sum(n))


gmap <- RBesT::gMAP(
formula = cbind(est, se) ~ 1 | trial,
weights = hist_data$n,
data = hist_data,
family = gaussian,
beta.prior = cbind(0, 100 * sd_tot),
tau.dist = "HalfNormal",
tau.prior = cbind(0, sd_tot / 4))

prior_ctr <- RBesT::robustify(
priormix = RBesT::automixfit(gmap),
weight = 0.5,
mean = 1.4,
sigma = sd_tot)

#RBesT::ess(prior_ctr)

## derive prior for treatment
## weak informative using same parameters as for robustify component
prior_trt <- RBesT::mixnorm(
comp1 = c(w = 1, m = 1.4, n = 1),
sigma = sd_tot,
param = "mn")
dose_levels <- c(0, 50, 100, 200)
## combine priors in list
prior_list <- c(list(prior_ctr), rep(list(prior_trt), times = length(dose_levels[-1])))

#Pre-Specification (B)MCPMod

## candidate models for MCPMod
# linear function - no guestimates needed
exp <- DoseFinding::guesst(d = 50,
p = c(0.2),
model = "exponential",
Maxd = max(dose_levels))
emax <- DoseFinding::guesst(d = 100,
p = c(0.9),
model = "emax")


mods <- DoseFinding::Mods(
linear = NULL,
emax = emax,
exponential = exp,
doses = dose_levels,
maxEff = 10,
placEff = 1.4)

#Simulation of new trial
##Note: This part will be simplified and direct results from one trial will be used
mods_sim <- DoseFinding::Mods(
emax = emax,
doses = dose_levels,
maxEff = 12,
placEff = 1.4)

n_patients <- c(50, 50, 50, 50)
data <- simulateData(
n_patients = n_patients,
dose_levels = dose_levels,
sd = sd_tot,
mods = mods_sim,
n_sim = 1)

data_emax <- data[, c("simulation", "dose", "emax")]
names(data_emax)[3] <- "response"

posterior_emax <- getPosterior(
data = data_emax,
prior_list = prior_list)

#Evaluation of Bayesian MCPMod

contr_mat <- DoseFinding::optContr(
models = mods,
doses = dose_levels,
w = n_patients)
##Calculation of critical value can be done with critVal function
crit_val_equal <- DoseFinding:::critVal(contr_mat$corMat, alpha = 0.05, df = 0, alternative = "one.sided")
crit_pval <- pnorm(crit_val_equal)

ess_prior <- round(unlist(lapply(prior_list, RBesT::ess)))

### Evaluation of Bayesian MCPMod
contr_mat_prior <- DoseFinding::optContr(
models = mods,
doses = dose_levels,
w = n_patients + ess_prior)

BMCP_result <- BMCPMod(
posteriors_list = list(posterior_emax),
contr_mat = contr_mat_prior,
crit_prob = crit_pval)

BMCP_result

#Model fit
#This part is currently not working
post_observed <- posterior_emax
model_shapes <- c("linear", "emax", "exponential")

# Option a) Simplified approach by using frequentist idea
fit_simple <- getModelFits(
models = model_shapes,
dose_levels = dose_levels,
posterior = post_observed,
simple = TRUE)

# Option b) Making use of the complete posterior distribution
fit <- getModelFits(
models = model_shapes,
dose_levels = dose_levels,
posterior = post_observed,
simple = FALSE)

result_simple <- getBootsrapBands(fit_simple)
result <- getBootsrapBands(fit)
expect_type(result_simple, "list")
expect_type(result, "list")

result_2_simple <- getBootsrapBands(fit_simple, n_samples = 1e2, alpha = c(0.1, 0.9), avg_fit = FALSE, dose_seq = c(1, 2, 3))
result_2 <- getBootsrapBands(fit, n_samples = 1e2, alpha = c(0.1, 0.9), avg_fit = FALSE, dose_seq = c(1, 2, 3))
expect_type(result_2_simple, "list")
expect_type(result_2, "list")

result_3_simple <- getBootsrapBands(fit_simple, dose_seq = NULL)
result_3 <- getBootsrapBands(fit, dose_seq = NULL)
expect_type(result_3_simple, "list")
expect_type(result_3, "list")
})

0 comments on commit cce6014

Please sign in to comment.