-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
153 additions
and
153 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,152 +1,152 @@ | ||
# # Test cases | ||
# test_that("test getBootsrapBands", { | ||
# library(clinDR) | ||
# library(dplyr) | ||
# | ||
# data("metaData") | ||
# testdata <- as.data.frame(metaData) | ||
# dataset <- filter(testdata, bname == "VIAGRA") | ||
# histcontrol <- filter(dataset, dose == 0, primtime == 12, indication == "ERECTILE DYSFUNCTION") | ||
# | ||
# ##Create MAP Prior | ||
# hist_data <- data.frame( | ||
# trial = c(1, 2, 3, 4), | ||
# est = histcontrol$rslt, | ||
# se = histcontrol$se, | ||
# sd = histcontrol$sd, | ||
# n = histcontrol$sampsize) | ||
# | ||
# sd_tot <- with(hist_data, sum(sd * n) / sum(n)) | ||
# | ||
# | ||
# gmap <- RBesT::gMAP( | ||
# formula = cbind(est, se) ~ 1 | trial, | ||
# weights = hist_data$n, | ||
# data = hist_data, | ||
# family = gaussian, | ||
# beta.prior = cbind(0, 100 * sd_tot), | ||
# tau.dist = "HalfNormal", | ||
# tau.prior = cbind(0, sd_tot / 4)) | ||
# | ||
# prior_ctr <- RBesT::robustify( | ||
# priormix = RBesT::automixfit(gmap), | ||
# weight = 0.5, | ||
# mean = 1.4, | ||
# sigma = sd_tot) | ||
# | ||
# #RBesT::ess(prior_ctr) | ||
# | ||
# ## derive prior for treatment | ||
# ## weak informative using same parameters as for robustify component | ||
# prior_trt <- RBesT::mixnorm( | ||
# comp1 = c(w = 1, m = 1.4, n = 1), | ||
# sigma = sd_tot, | ||
# param = "mn") | ||
# dose_levels <- c(0, 50, 100, 200) | ||
# ## combine priors in list | ||
# prior_list <- c(list(prior_ctr), rep(list(prior_trt), times = length(dose_levels[-1]))) | ||
# | ||
# #Pre-Specification (B)MCPMod | ||
# | ||
# ## candidate models for MCPMod | ||
# # linear function - no guestimates needed | ||
# exp <- DoseFinding::guesst(d = 50, | ||
# p = c(0.2), | ||
# model = "exponential", | ||
# Maxd = max(dose_levels)) | ||
# emax <- DoseFinding::guesst(d = 100, | ||
# p = c(0.9), | ||
# model = "emax") | ||
# | ||
# | ||
# mods <- DoseFinding::Mods( | ||
# linear = NULL, | ||
# emax = emax, | ||
# exponential = exp, | ||
# doses = dose_levels, | ||
# maxEff = 10, | ||
# placEff = 1.4) | ||
# | ||
# #Simulation of new trial | ||
# ##Note: This part will be simplified and direct results from one trial will be used | ||
# mods_sim <- DoseFinding::Mods( | ||
# emax = emax, | ||
# doses = dose_levels, | ||
# maxEff = 12, | ||
# placEff = 1.4) | ||
# | ||
# n_patients <- c(50, 50, 50, 50) | ||
# data <- simulateData( | ||
# n_patients = n_patients, | ||
# dose_levels = dose_levels, | ||
# sd = sd_tot, | ||
# mods = mods_sim, | ||
# n_sim = 1) | ||
# | ||
# data_emax <- data[, c("simulation", "dose", "emax")] | ||
# names(data_emax)[3] <- "response" | ||
# | ||
# posterior_emax <- getPosterior( | ||
# data = data_emax, | ||
# prior_list = prior_list) | ||
# | ||
# #Evaluation of Bayesian MCPMod | ||
# | ||
# contr_mat <- DoseFinding::optContr( | ||
# models = mods, | ||
# doses = dose_levels, | ||
# w = n_patients) | ||
# ##Calculation of critical value can be done with critVal function | ||
# crit_val_equal <- DoseFinding:::critVal(contr_mat$corMat, alpha = 0.05, df = 0, alternative = "one.sided") | ||
# crit_pval <- pnorm(crit_val_equal) | ||
# | ||
# ess_prior <- round(unlist(lapply(prior_list, RBesT::ess))) | ||
# | ||
# ### Evaluation of Bayesian MCPMod | ||
# contr_mat_prior <- DoseFinding::optContr( | ||
# models = mods, | ||
# doses = dose_levels, | ||
# w = n_patients + ess_prior) | ||
# | ||
# BMCP_result <- BMCPMod( | ||
# posteriors_list = list(posterior_emax), | ||
# contr_mat = contr_mat_prior, | ||
# crit_prob = crit_pval) | ||
# | ||
# BMCP_result | ||
# | ||
# #Model fit | ||
# #This part is currently not working | ||
# post_observed <- posterior_emax | ||
# model_shapes <- c("linear", "emax", "exponential") | ||
# | ||
# # Option a) Simplified approach by using frequentist idea | ||
# fit_simple <- getModelFits( | ||
# models = model_shapes, | ||
# dose_levels = dose_levels, | ||
# posterior = post_observed, | ||
# simple = TRUE) | ||
# | ||
# # Option b) Making use of the complete posterior distribution | ||
# fit <- getModelFits( | ||
# models = model_shapes, | ||
# dose_levels = dose_levels, | ||
# posterior = post_observed, | ||
# simple = FALSE) | ||
# | ||
# result_simple <- getBootsrapBands(fit_simple) | ||
# result <- getBootsrapBands(fit) | ||
# expect_type(result_simple, "data.frame") | ||
# expect_type(result, "data.frame") | ||
# | ||
# result_2_simple <- getBootsrapBands(fit_simple, n_samples = 1e2, alpha = c(0.1, 0.9), avg_fit = FALSE, dose_seq = c(1, 2, 3)) | ||
# result_2 <- getBootsrapBands(fit, n_samples = 1e2, alpha = c(0.1, 0.9), avg_fit = FALSE, dose_seq = c(1, 2, 3)) | ||
# expect_type(result_2_simple, "data.frame") | ||
# expect_type(result_2, "data.frame") | ||
# | ||
# result_3_simple <- getBootsrapBands(fit_simple, dose_seq = NULL) | ||
# result_3 <- getBootsrapBands(fit, dose_seq = NULL) | ||
# expect_type(result_3_simple, "data.frame") | ||
# expect_type(result_3, "data.frame") | ||
# }) | ||
# | ||
# Test cases | ||
test_that("test getBootsrapBands", { | ||
library(clinDR) | ||
library(dplyr) | ||
|
||
data("metaData") | ||
testdata <- as.data.frame(metaData) | ||
dataset <- filter(testdata, bname == "VIAGRA") | ||
histcontrol <- filter(dataset, dose == 0, primtime == 12, indication == "ERECTILE DYSFUNCTION") | ||
|
||
##Create MAP Prior | ||
hist_data <- data.frame( | ||
trial = c(1, 2, 3, 4), | ||
est = histcontrol$rslt, | ||
se = histcontrol$se, | ||
sd = histcontrol$sd, | ||
n = histcontrol$sampsize) | ||
|
||
sd_tot <- with(hist_data, sum(sd * n) / sum(n)) | ||
|
||
|
||
gmap <- RBesT::gMAP( | ||
formula = cbind(est, se) ~ 1 | trial, | ||
weights = hist_data$n, | ||
data = hist_data, | ||
family = gaussian, | ||
beta.prior = cbind(0, 100 * sd_tot), | ||
tau.dist = "HalfNormal", | ||
tau.prior = cbind(0, sd_tot / 4)) | ||
|
||
prior_ctr <- RBesT::robustify( | ||
priormix = RBesT::automixfit(gmap), | ||
weight = 0.5, | ||
mean = 1.4, | ||
sigma = sd_tot) | ||
|
||
#RBesT::ess(prior_ctr) | ||
|
||
## derive prior for treatment | ||
## weak informative using same parameters as for robustify component | ||
prior_trt <- RBesT::mixnorm( | ||
comp1 = c(w = 1, m = 1.4, n = 1), | ||
sigma = sd_tot, | ||
param = "mn") | ||
dose_levels <- c(0, 50, 100, 200) | ||
## combine priors in list | ||
prior_list <- c(list(prior_ctr), rep(list(prior_trt), times = length(dose_levels[-1]))) | ||
|
||
#Pre-Specification (B)MCPMod | ||
|
||
## candidate models for MCPMod | ||
# linear function - no guestimates needed | ||
exp <- DoseFinding::guesst(d = 50, | ||
p = c(0.2), | ||
model = "exponential", | ||
Maxd = max(dose_levels)) | ||
emax <- DoseFinding::guesst(d = 100, | ||
p = c(0.9), | ||
model = "emax") | ||
|
||
|
||
mods <- DoseFinding::Mods( | ||
linear = NULL, | ||
emax = emax, | ||
exponential = exp, | ||
doses = dose_levels, | ||
maxEff = 10, | ||
placEff = 1.4) | ||
|
||
#Simulation of new trial | ||
##Note: This part will be simplified and direct results from one trial will be used | ||
mods_sim <- DoseFinding::Mods( | ||
emax = emax, | ||
doses = dose_levels, | ||
maxEff = 12, | ||
placEff = 1.4) | ||
|
||
n_patients <- c(50, 50, 50, 50) | ||
data <- simulateData( | ||
n_patients = n_patients, | ||
dose_levels = dose_levels, | ||
sd = sd_tot, | ||
mods = mods_sim, | ||
n_sim = 1) | ||
|
||
data_emax <- data[, c("simulation", "dose", "emax")] | ||
names(data_emax)[3] <- "response" | ||
|
||
posterior_emax <- getPosterior( | ||
data = data_emax, | ||
prior_list = prior_list) | ||
|
||
#Evaluation of Bayesian MCPMod | ||
|
||
contr_mat <- DoseFinding::optContr( | ||
models = mods, | ||
doses = dose_levels, | ||
w = n_patients) | ||
##Calculation of critical value can be done with critVal function | ||
crit_val_equal <- DoseFinding:::critVal(contr_mat$corMat, alpha = 0.05, df = 0, alternative = "one.sided") | ||
crit_pval <- pnorm(crit_val_equal) | ||
|
||
ess_prior <- round(unlist(lapply(prior_list, RBesT::ess))) | ||
|
||
### Evaluation of Bayesian MCPMod | ||
contr_mat_prior <- DoseFinding::optContr( | ||
models = mods, | ||
doses = dose_levels, | ||
w = n_patients + ess_prior) | ||
|
||
BMCP_result <- BMCPMod( | ||
posteriors_list = list(posterior_emax), | ||
contr_mat = contr_mat_prior, | ||
crit_prob = crit_pval) | ||
|
||
BMCP_result | ||
|
||
#Model fit | ||
#This part is currently not working | ||
post_observed <- posterior_emax | ||
model_shapes <- c("linear", "emax", "exponential") | ||
|
||
# Option a) Simplified approach by using frequentist idea | ||
fit_simple <- getModelFits( | ||
models = model_shapes, | ||
dose_levels = dose_levels, | ||
posterior = post_observed, | ||
simple = TRUE) | ||
|
||
# Option b) Making use of the complete posterior distribution | ||
fit <- getModelFits( | ||
models = model_shapes, | ||
dose_levels = dose_levels, | ||
posterior = post_observed, | ||
simple = FALSE) | ||
|
||
result_simple <- getBootsrapBands(fit_simple) | ||
result <- getBootsrapBands(fit) | ||
expect_type(result_simple, "list") | ||
expect_type(result, "list") | ||
|
||
result_2_simple <- getBootsrapBands(fit_simple, n_samples = 1e2, alpha = c(0.1, 0.9), avg_fit = FALSE, dose_seq = c(1, 2, 3)) | ||
result_2 <- getBootsrapBands(fit, n_samples = 1e2, alpha = c(0.1, 0.9), avg_fit = FALSE, dose_seq = c(1, 2, 3)) | ||
expect_type(result_2_simple, "list") | ||
expect_type(result_2, "list") | ||
|
||
result_3_simple <- getBootsrapBands(fit_simple, dose_seq = NULL) | ||
result_3 <- getBootsrapBands(fit, dose_seq = NULL) | ||
expect_type(result_3_simple, "list") | ||
expect_type(result_3, "list") | ||
}) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters