-
Notifications
You must be signed in to change notification settings - Fork 0
/
generic_utils.py
439 lines (365 loc) · 15.2 KB
/
generic_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
"""Python utilities required by Keras."""
import binascii
import numpy as np
import time
import sys
import six
import marshal
import types as python_types
import inspect
import codecs
import collections
_GLOBAL_CUSTOM_OBJECTS = {}
class CustomObjectScope(object):
"""Provides a scope that changes to `_GLOBAL_CUSTOM_OBJECTS` cannot escape.
Code within a `with` statement will be able to access custom objects
by name. Changes to global custom objects persist
within the enclosing `with` statement. At end of the `with` statement,
global custom objects are reverted to state
at beginning of the `with` statement.
# Example
Consider a custom object `MyObject` (e.g. a class):
```python
with CustomObjectScope({'MyObject':MyObject}):
layer = Dense(..., kernel_regularizer='MyObject')
# save, load, etc. will recognize custom object by name
```
"""
def __init__(self, *args):
self.custom_objects = args
self.backup = None
def __enter__(self):
self.backup = _GLOBAL_CUSTOM_OBJECTS.copy()
for objects in self.custom_objects:
_GLOBAL_CUSTOM_OBJECTS.update(objects)
return self
def __exit__(self, *args, **kwargs):
_GLOBAL_CUSTOM_OBJECTS.clear()
_GLOBAL_CUSTOM_OBJECTS.update(self.backup)
def custom_object_scope(*args):
"""Provides a scope that changes to `_GLOBAL_CUSTOM_OBJECTS` cannot escape.
Convenience wrapper for `CustomObjectScope`.
Code within a `with` statement will be able to access custom objects
by name. Changes to global custom objects persist
within the enclosing `with` statement. At end of the `with` statement,
global custom objects are reverted to state
at beginning of the `with` statement.
# Example
Consider a custom object `MyObject`
```python
with custom_object_scope({'MyObject':MyObject}):
layer = Dense(..., kernel_regularizer='MyObject')
# save, load, etc. will recognize custom object by name
```
# Arguments
*args: Variable length list of dictionaries of name,
class pairs to add to custom objects.
# Returns
Object of type `CustomObjectScope`.
"""
return CustomObjectScope(*args)
def get_custom_objects():
"""Retrieves a live reference to the global dictionary of custom objects.
Updating and clearing custom objects using `custom_object_scope`
is preferred, but `get_custom_objects` can
be used to directly access `_GLOBAL_CUSTOM_OBJECTS`.
# Example
```python
get_custom_objects().clear()
get_custom_objects()['MyObject'] = MyObject
```
# Returns
Global dictionary of names to classes (`_GLOBAL_CUSTOM_OBJECTS`).
"""
return _GLOBAL_CUSTOM_OBJECTS
def serialize_keras_object(instance):
if instance is None:
return None
if hasattr(instance, 'get_config'):
return {
'class_name': instance.__class__.__name__,
'config': instance.get_config()
}
if hasattr(instance, '__name__'):
return instance.__name__
else:
raise ValueError('Cannot serialize', instance)
def deserialize_keras_object(identifier, module_objects=None,
custom_objects=None,
printable_module_name='object'):
if isinstance(identifier, dict):
# In this case we are dealing with a Keras config dictionary.
config = identifier
if 'class_name' not in config or 'config' not in config:
raise ValueError('Improper config format: ' + str(config))
class_name = config['class_name']
if custom_objects and class_name in custom_objects:
cls = custom_objects[class_name]
elif class_name in _GLOBAL_CUSTOM_OBJECTS:
cls = _GLOBAL_CUSTOM_OBJECTS[class_name]
else:
module_objects = module_objects or {}
cls = module_objects.get(class_name)
if cls is None:
raise ValueError('Unknown ' + printable_module_name +
': ' + class_name)
if hasattr(cls, 'from_config'):
custom_objects = custom_objects or {}
if has_arg(cls.from_config, 'custom_objects'):
return cls.from_config(config['config'],
custom_objects=dict(list(_GLOBAL_CUSTOM_OBJECTS.items()) +
list(custom_objects.items())))
with CustomObjectScope(custom_objects):
return cls.from_config(config['config'])
else:
# Then `cls` may be a function returning a class.
# in this case by convention `config` holds
# the kwargs of the function.
custom_objects = custom_objects or {}
with CustomObjectScope(custom_objects):
return cls(**config['config'])
elif isinstance(identifier, six.string_types):
function_name = identifier
if custom_objects and function_name in custom_objects:
fn = custom_objects.get(function_name)
elif function_name in _GLOBAL_CUSTOM_OBJECTS:
fn = _GLOBAL_CUSTOM_OBJECTS[function_name]
else:
fn = module_objects.get(function_name)
if fn is None:
raise ValueError('Unknown ' + printable_module_name +
':' + function_name)
return fn
else:
raise ValueError('Could not interpret serialized ' +
printable_module_name + ': ' + identifier)
def func_dump(func):
"""Serializes a user defined function.
# Arguments
func: the function to serialize.
# Returns
A tuple `(code, defaults, closure)`.
"""
raw_code = marshal.dumps(func.__code__)
code = codecs.encode(raw_code, 'base64').decode('ascii')
defaults = func.__defaults__
if func.__closure__:
closure = tuple(c.cell_contents for c in func.__closure__)
else:
closure = None
return code, defaults, closure
def func_load(code, defaults=None, closure=None, globs=None):
"""Deserializes a user defined function.
# Arguments
code: bytecode of the function.
defaults: defaults of the function.
closure: closure of the function.
globs: dictionary of global objects.
# Returns
A function object.
"""
if isinstance(code, (tuple, list)): # unpack previous dump
code, defaults, closure = code
if isinstance(defaults, list):
defaults = tuple(defaults)
def ensure_value_to_cell(value):
"""Ensures that a value is converted to a python cell object.
# Arguments
value: Any value that needs to be casted to the cell type
# Returns
A value wrapped as a cell object (see function "func_load")
"""
def dummy_fn():
value # just access it so it gets captured in .__closure__
cell_value = dummy_fn.__closure__[0]
if not isinstance(value, type(cell_value)):
return cell_value
else:
return value
if closure is not None:
closure = tuple(ensure_value_to_cell(_) for _ in closure)
try:
raw_code = codecs.decode(code.encode('ascii'), 'base64')
code = marshal.loads(raw_code)
except (UnicodeEncodeError, binascii.Error, ValueError):
# backwards compatibility for models serialized prior to 2.1.2
raw_code = code.encode('raw_unicode_escape')
code = marshal.loads(raw_code)
if globs is None:
globs = globals()
return python_types.FunctionType(code, globs,
name=code.co_name,
argdefs=defaults,
closure=closure)
def has_arg(fn, name, accept_all=False):
"""Checks if a callable accepts a given keyword argument.
For Python 2, checks if there is an argument with the given name.
For Python 3, checks if there is an argument with the given name, and
also whether this argument can be called with a keyword (i.e. if it is
not a positional-only argument).
# Arguments
fn: Callable to inspect.
name: Check if `fn` can be called with `name` as a keyword argument.
accept_all: What to return if there is no parameter called `name`
but the function accepts a `**kwargs` argument.
# Returns
bool, whether `fn` accepts a `name` keyword argument.
"""
if sys.version_info < (3,):
arg_spec = inspect.getargspec(fn)
if accept_all and arg_spec.keywords is not None:
return True
return (name in arg_spec.args)
elif sys.version_info < (3, 3):
arg_spec = inspect.getfullargspec(fn)
if accept_all and arg_spec.varkw is not None:
return True
return (name in arg_spec.args or
name in arg_spec.kwonlyargs)
else:
signature = inspect.signature(fn)
parameter = signature.parameters.get(name)
if parameter is None:
if accept_all:
for param in list(signature.parameters.values()):
if param.kind == inspect.Parameter.VAR_KEYWORD:
return True
return False
return (parameter.kind in (inspect.Parameter.POSITIONAL_OR_KEYWORD,
inspect.Parameter.KEYWORD_ONLY))
class Progbar(object):
"""Displays a progress bar.
# Arguments
target: Total number of steps expected, None if unknown.
width: Progress bar width on screen.
verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)
stateful_metrics: Iterable of string names of metrics that
should *not* be averaged over time. Metrics in this list
will be displayed as-is. All others will be averaged
by the progbar before display.
interval: Minimum visual progress update interval (in seconds).
"""
def __init__(self, target, width=30, verbose=1, interval=0.05,
stateful_metrics=None):
self.target = target
self.width = width
self.verbose = verbose
self.interval = interval
if stateful_metrics:
self.stateful_metrics = set(stateful_metrics)
else:
self.stateful_metrics = set()
self._dynamic_display = ((hasattr(sys.stdout, 'isatty') and
sys.stdout.isatty()) or
'ipykernel' in sys.modules)
self._total_width = 0
self._seen_so_far = 0
self._values = collections.OrderedDict()
self._start = time.time()
self._last_update = 0
def update(self, current, values=None):
"""Updates the progress bar.
# Arguments
current: Index of current step.
values: List of tuples:
`(name, value_for_last_step)`.
If `name` is in `stateful_metrics`,
`value_for_last_step` will be displayed as-is.
Else, an average of the metric over time will be displayed.
"""
values = values or []
for k, v in values:
if k not in self.stateful_metrics:
if k not in self._values:
self._values[k] = [v * (current - self._seen_so_far),
current - self._seen_so_far]
else:
self._values[k][0] += v * (current - self._seen_so_far)
self._values[k][1] += (current - self._seen_so_far)
else:
self._values[k] = v
self._seen_so_far = current
now = time.time()
info = ' - %.0fs' % (now - self._start)
if self.verbose == 1:
if (now - self._last_update < self.interval and
self.target is not None and current < self.target):
return
prev_total_width = self._total_width
if self._dynamic_display:
sys.stdout.write('\b' * prev_total_width)
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
if self.target is not None:
numdigits = int(np.floor(np.log10(self.target))) + 1
barstr = '%%%dd/%d [' % (numdigits, self.target)
bar = barstr % current
prog = float(current) / self.target
prog_width = int(self.width * prog)
if prog_width > 0:
bar += ('=' * (prog_width - 1))
if current < self.target:
bar += '>'
else:
bar += '='
bar += ('.' * (self.width - prog_width))
bar += ']'
else:
bar = '%7d/Unknown' % current
self._total_width = len(bar)
sys.stdout.write(bar)
if current:
time_per_unit = (now - self._start) / current
else:
time_per_unit = 0
if self.target is not None and current < self.target:
eta = time_per_unit * (self.target - current)
if eta > 3600:
eta_format = '%d:%02d:%02d' % (eta // 3600, (eta % 3600) // 60, eta % 60)
elif eta > 60:
eta_format = '%d:%02d' % (eta // 60, eta % 60)
else:
eta_format = '%ds' % eta
info = ' - ETA: %s' % eta_format
else:
if time_per_unit >= 1:
info += ' %.0fs/step' % time_per_unit
elif time_per_unit >= 1e-3:
info += ' %.0fms/step' % (time_per_unit * 1e3)
else:
info += ' %.0fus/step' % (time_per_unit * 1e6)
for k in self._values:
info += ' - %s:' % k
if isinstance(self._values[k], list):
avg = np.mean(
self._values[k][0] / max(1, self._values[k][1]))
if abs(avg) > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
else:
info += ' %s' % self._values[k]
self._total_width += len(info)
if prev_total_width > self._total_width:
info += (' ' * (prev_total_width - self._total_width))
if self.target is not None and current >= self.target:
info += '\n'
sys.stdout.write(info)
sys.stdout.flush()
elif self.verbose == 2:
if self.target is None or current >= self.target:
for k in self._values:
info += ' - %s:' % k
avg = np.mean(
self._values[k][0] / max(1, self._values[k][1]))
if avg > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
info += '\n'
sys.stdout.write(info)
sys.stdout.flush()
self._last_update = now
def add(self, n, values=None):
self.update(self._seen_so_far + n, values)