forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* refactor by pre-commit * reformatted by pre-commit * refactor code for globalwoz
- Loading branch information
1 parent
7e4ee43
commit 0b8f3d5
Showing
2 changed files
with
226 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
import os | ||
import json | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
import itertools | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Tasks, Licenses | ||
|
||
_CITATION = """\ | ||
@inproceedings{ding-etal-2022-globalwoz, | ||
title = "{G}lobal{W}o{Z}: Globalizing {M}ulti{W}o{Z} to Develop Multilingual Task-Oriented Dialogue Systems", | ||
author = "Ding, Bosheng and | ||
Hu, Junjie and | ||
Bing, Lidong and | ||
Aljunied, Mahani and | ||
Joty, Shafiq and | ||
Si, Luo and | ||
Miao, Chunyan", | ||
editor = "Muresan, Smaranda and | ||
Nakov, Preslav and | ||
Villavicencio, Aline", | ||
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", | ||
month = may, | ||
year = "2022", | ||
} | ||
""" | ||
|
||
_DATASETNAME = "globalwoz" | ||
|
||
_DESCRIPTION = """\ | ||
This is the data of the paper “GlobalWoZ: Globalizing MultiWoZ to Develop Multilingual Task-Oriented Dialogue Systems” accepted by ACL 2022. The dataset contains several sub-datasets in 20 languages and 3 schemes (F&E, E&F, F&F), including Indonesian (id), Thai (th), and Vietnamese (vi) language. The method is based on translating dialogue templates and filling them with local entities in the target language countries. | ||
""" | ||
|
||
|
||
_HOMEPAGE = "https://github.com/bosheng2020/globalwoz" | ||
|
||
|
||
_LANGUAGES = ["ind", "tha", "vie"] | ||
|
||
_LICENSE = Licenses.UNKNOWN.value | ||
|
||
_LOCAL = True | ||
|
||
_URLS = {} | ||
|
||
_SUPPORTED_TASKS = [Tasks.E2E_TASK_ORIENTED_DIALOGUE] | ||
|
||
_SOURCE_VERSION = "2.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
def seacrowd_config_constructor(dial_type, lang, schema, version): | ||
if dial_type not in ["EandF", "FandE", "FandF"]: | ||
raise ValueError(f"Invalid dialogue type {dial_type}") | ||
|
||
if lang == "": | ||
raise ValueError(f"Invalid lang {lang}") | ||
|
||
if schema not in ["source", "seacrowd_tod"]: | ||
raise ValueError(f"Invalid schema: {schema}") | ||
|
||
return SEACrowdConfig( | ||
name="globalwoz_{dial_type}_{lang}_{schema}".format(dial_type=dial_type, lang=lang, schema=schema), | ||
version=datasets.Version(version), | ||
description="GlobalWoZ schema for {schema}: {dial_type}_{lang}".format(schema=schema, dial_type=dial_type, lang=lang), | ||
schema=schema, | ||
subset_id="globalwoz_{dial_type}_{lang}".format(dial_type=dial_type, lang=lang), | ||
) | ||
|
||
|
||
class GlobalWoZ(datasets.GeneratorBasedBuilder): | ||
"""This is the data of the paper “GlobalWoZ: Globalizing MultiWoZ to Develop Multilingual Task-Oriented Dialogue Systems” accepted by ACL 2022. | ||
The dataset contains several sub-datasets in 20 languages and 3 schemes (F&E, E&F, F&F), including Indonesian (id), Thai (th), | ||
and Vietnamese (vi) language. The method is based on translating dialogue templates and filling them with local entities in the target language countries. | ||
""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [ | ||
seacrowd_config_constructor(tod_format, lang, schema, _SOURCE_VERSION if schema == "source" else _SEACROWD_VERSION) for tod_format, lang, schema in itertools.product(("EandF", "FandE", "FandF"), ("id", "th", "vi"), ("source", "seacrowd_tod")) | ||
] | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"goal": { | ||
"attraction": datasets.Value("string"), | ||
"hospital": datasets.Value("string"), | ||
"hotel": datasets.Value("string"), | ||
"police": datasets.Value("string"), | ||
"restaurant": datasets.Value("string"), | ||
"taxi": datasets.Value("string"), | ||
"train": datasets.Value("string"), | ||
}, | ||
"log": [ | ||
{ | ||
"dialog_act": datasets.Value("string"), | ||
"metadata": datasets.Value("string"), | ||
"span_info": [[datasets.Value("string")]], | ||
"text": datasets.Value("string"), | ||
} | ||
], | ||
} | ||
) | ||
|
||
elif self.config.schema == "seacrowd_tod": | ||
features = schemas.tod_features | ||
else: | ||
raise NotImplementedError() | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
_split_generators = [] | ||
|
||
type_and_lang = {"dial_type": self.config.subset_id.split("_")[1].replace("and", "&"), "lang": self.config.subset_id.split("_")[2]} # globalwoz_{dial_type}_{lang} | ||
|
||
if self.config.data_dir is None: | ||
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") | ||
else: | ||
data_dir = self.config.data_dir | ||
|
||
if not os.path.exists(os.path.join(data_dir, f"{type_and_lang['dial_type']}_{type_and_lang['lang']}.json")): | ||
raise FileNotFoundError() | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
# "filepath": data_dir + f"_{type_and_lang['dial_type']}_{type_and_lang['lang']}.json", | ||
"filepath": os.path.join(data_dir, f"{type_and_lang['dial_type']}_{type_and_lang['lang']}.json"), | ||
"split": "train", | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
# For local datasets you will have access to self.config.data_dir and self.config.data_files | ||
with open(filepath, "r+", encoding="utf8") as fw: | ||
data = json.load(fw) | ||
|
||
if self.config.schema == "source": | ||
for idx, tod_dialogue in enumerate(data.values()): | ||
example = {} | ||
example["id"] = str(idx) | ||
example["goal"] = {} | ||
|
||
for goal_key in ["attraction", "hospital", "hotel", "police", "restaurant", "taxi", "train"]: | ||
example["goal"][goal_key] = json.dumps(tod_dialogue["goal"][goal_key]) | ||
example["log"] = [] | ||
|
||
for dial_log in tod_dialogue["log"]: | ||
dial = {} | ||
dial["dialog_act"] = json.dumps(dial_log["dialog_act"]) | ||
dial["metadata"] = json.dumps(dial_log["metadata"]) | ||
for i in range(len(dial_log["span_info"])): | ||
for j in range(len(dial_log["span_info"][i])): | ||
dial_log["span_info"][i][j] = str(dial_log["span_info"][i][j]) # casting to str | ||
dial["span_info"] = [[str(span)] if isinstance(span, str) else span for span in dial_log["span_info"]] | ||
dial["text"] = dial_log["text"] | ||
|
||
example["log"].append(dial) | ||
|
||
yield example["id"], example | ||
|
||
elif self.config.schema == "seacrowd_tod": | ||
for idx, tod_dialogue in enumerate(data.values()): | ||
example = {} | ||
example["dialogue_idx"] = idx | ||
|
||
dialogue = [] | ||
# NOTE: the dialogue always started with `user` as first utterance | ||
for turn, i in enumerate(range(0, len(tod_dialogue["log"]) + 2, 2)): | ||
dial = {} | ||
dial["turn_idx"] = turn | ||
|
||
# system_utterance properties | ||
dial["system_utterance"] = "" | ||
dial["system_acts"] = [] | ||
if turn != 0: | ||
dial["system_utterance"] = tod_dialogue["log"][i - 1]["text"] | ||
if i < len(tod_dialogue["log"]): | ||
# NOTE: "system_acts will be populated with the `dialog_act` from the user utterance in the original dataset, as our schema dictates | ||
# that `system_acts` should represent the system's intended actions based on the user's utterance." | ||
for acts in tod_dialogue["log"][i]["dialog_act"].values(): | ||
for act in acts: | ||
dial["system_acts"].append([act[0]]) | ||
|
||
# user_utterance properties | ||
dial["turn_label"] = [] # left as an empty array | ||
dial["belief_state"] = [] | ||
if i == len(tod_dialogue["log"]): | ||
# case if turn_idx > len(dialogue) --> add dummy user_utterance | ||
dial["user_utterance"] = "" | ||
else: | ||
dial["user_utterance"] = tod_dialogue["log"][i]["text"] | ||
# NOTE: "the belief_state will be populated with the `span_info` from the user utterance in the original dataset, as our schema dictates | ||
# that `belief_state` should represent the system's belief state based on the user's utterance." | ||
for span in tod_dialogue["log"][i]["span_info"]: | ||
if span[0].split("-")[1] == "request": # Request action | ||
dial["belief_state"].append({"slots": [["slot", span[1]]], "act": "request"}) | ||
else: | ||
dial["belief_state"].append({"slots": [[span[1], span[2]]], "act": span[0].split("-")[1]}) | ||
|
||
# append to dialogue | ||
dialogue.append(dial) | ||
|
||
example["dialogue"] = dialogue | ||
|
||
yield example["dialogue_idx"], example |