Skip to content

Commit

Permalink
Refactor and improve the code for textgrad testing
Browse files Browse the repository at this point in the history
  • Loading branch information
sanowl committed Jun 20, 2024
1 parent ade4d44 commit cacd769
Show file tree
Hide file tree
Showing 2 changed files with 27 additions and 40 deletions.
Empty file.
67 changes: 27 additions & 40 deletions tests/test_basics.py
Original file line number Diff line number Diff line change
@@ -1,38 +1,35 @@
import openai
from textgrad.variable import Variable
from textgrad.optimizer import TextualGradientDescent
from textgrad.engine.base import EngineLM
from textgrad.engine.openai import ChatOpenAI
import os
import pytest
import logging
logging.disable(logging.CRITICAL)


class DummyEngine(EngineLM):
from textgrad import Variable, TextualGradientDescent, BlackboxLLM, sum
from textgrad.engine.base import EngineLM
from textgrad.engine.openai import ChatOpenAI
from textgrad.autograd import LLMCall, FormattedLLMCall

logging.disable(logging.CRITICAL)

# Dummy engine that always returns "Hello World"
class DummyEngine(EngineLM):
def generate(self, prompt, system_prompt=None, **kwargs):
return "Hello World"

def __call__(self, prompt, system_prompt=None):
return self.generate(prompt)

# Idempotent engine that returns the prompt as is
class IdempotentEngine(EngineLM):

def generate(self, prompt, system_prompt=None, **kwargs):
return prompt

def __call__(self, prompt, system_prompt=None):
return self.generate(prompt)


# Test if the variable object is passed correctly to the optimizer
def test_variable_object_passing():
"""
Test if the variable object is passed correctly to the optimizer
and if the edits propagate to the original variable
:return:
"""
v = Variable("Hello", role_description="A variable")
g = Variable("grad", role_description="A variable")
g = Variable("grad", role_description="A gradient")
optimizer = TextualGradientDescent(parameters=[v], engine=DummyEngine())

optimizer.parameters[0].gradients.add(g)
Expand All @@ -42,16 +39,15 @@ def test_variable_object_passing():
assert optimizer.parameters[0].get_gradient_text() == "grad"
assert v.value == "World"

# Test the OpenAI engine initialization
def test_openai_engine():

with pytest.raises(ValueError) as e:
with pytest.raises(ValueError):
engine = ChatOpenAI()

import os
os.environ['OPENAI_API_KEY'] = "fake_key"
engine = ChatOpenAI()


# Test importing main components from textgrad
def test_import_main_components():
from textgrad import Variable, TextualGradientDescent, EngineLM
from textgrad.engine.openai import ChatOpenAI
Expand All @@ -63,64 +59,55 @@ def test_import_main_components():
assert ChatOpenAI
assert BlackboxLLM

# Test a simple forward pass using the dummy engine
def test_simple_forward_pass_engine():
from textgrad import BlackboxLLM
from textgrad import Variable

text = Variable("Hello", role_description="A variable")
dummy_engine = DummyEngine()

engine = BlackboxLLM(engine=dummy_engine)

response = engine(text)

assert response

# Test variable creation and attributes
def test_variable_creation():
from textgrad import Variable

text = Variable("Hello", role_description="A variable")

assert text.value == "Hello"
assert text.role_description == "A variable"

text = Variable("Hello", role_description="A variable", requires_grad=True)

assert text.requires_grad == True
assert text.requires_grad is True
assert text.value == "Hello"
assert text.role_description == "A variable"

with pytest.raises(TypeError) as e:
with pytest.raises(TypeError):
text = Variable("Hello")


# Test the sum function for variables
def test_sum_function():
from textgrad import sum
from textgrad.variable import Variable

var1 = Variable("Line1", role_description="role1")
var2 = Variable("Line2", role_description="role2")
total = sum(variables=[var1, var2])

assert total.get_value() == "Line1\nLine2"
assert "a combination of the following" in total.get_role_description()
assert "role1" in total.get_role_description()
assert "role2" in total.get_role_description()


# Test LLMCall using the dummy engine
def test_llmcall():
from textgrad.autograd import LLMCall
from textgrad import Variable
llm_call = LLMCall(DummyEngine())
input_variable = Variable("Input", role_description="Input")
output = llm_call(input_variable)

assert isinstance(output, Variable)
assert output.get_value() == "Hello World"
assert input_variable in output.predecessors


# Test FormattedLLMCall using the idempotent engine
def test_formattedllmcall():
from textgrad.autograd import FormattedLLMCall
from textgrad import Variable

format_string = "Question: {question}\nPrediction: {prediction}"
fields = {"prediction": None, "question": None}
formatted_llm_call = FormattedLLMCall(engine=IdempotentEngine(),
Expand All @@ -131,9 +118,9 @@ def test_formattedllmcall():
"prediction": Variable("p", role_description="Prediction")
}
output = formatted_llm_call(inputs, response_role_description="test response")

assert isinstance(output, Variable)
assert output.get_value() == "Question: q\nPrediction: p"
assert inputs["question"] in output.predecessors
assert inputs["prediction"] in output.predecessors
assert output.get_role_description() == "test response"
assert output.get_role_description() == "test response"

0 comments on commit cacd769

Please sign in to comment.