Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
zlinao authored Mar 31, 2020
1 parent 6eaa53b commit 9a6cfa4
Showing 1 changed file with 31 additions and 1 deletion.
32 changes: 31 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,35 @@
# Variational-Transformer
This code has been written using PyTorch >= 0.4.1.
<img src="plot/pytorch-logo-dark.png" width="10%"> [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

<img align="right" src="plot/HKUST.jpg" width="12%">

This is the PyTorch implementation of the paper:

**MoEL: Mixture of Empathetic Listeners**. [**Zhaojiang Lin**](https://zlinao.github.io/), Genta Indra Winata, Peng Xu, Zihan Liu, Pascale Fung [[PDF]](https://arxiv.org/pdf/2003.12738.pdf)

This code has been written using PyTorch >= 0.4.1. If you use any source codes or datasets included in this toolkit in your work, please cite the following paper. The bibtex is listed below:
<pre>
@misc{lin2020variational,
title={Variational Transformers for Diverse Response Generation},
author={Zhaojiang Lin and Genta Indra Winata and Peng Xu and Zihan Liu and Pascale Fung},
year={2020},
eprint={2003.12738},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
</pre>

## Global Variational Transformer (GVT):
<p align="center">
<img src="plot/GVT.png" width="100%" />
</p>
The GVT is the extension of CVAE in Zhao et al. (2017), which modeling the discourse-level diversity with a global latent variable.

## Sequential Variational Transformer (SVT):
<p align="center">
<img src="plot/SVT.png" width="100%" />
</p>
SVT, inspired by variational autoregressive models (Goyal et al., 2017; Du et al., 2018), incorporates a sequence of latent variables into decoding process by using a novel variational decoder layer. Unlike previous approaches (Zhao et al., 2017; Goyal et al., 2017; Du et al., 2018), SVT uses Non-causal Multi-head Attention, which attend to future tokens for computing posterior latent variables instead of using an additional encoder.

## Dependency
Check the packages needed or simply run the command
Expand Down

0 comments on commit 9a6cfa4

Please sign in to comment.