Skip to content

Face analysis tools for modern research, equipped with state-of-the-art Face Parsing and Face Alignment

License

Notifications You must be signed in to change notification settings

zenai-cantina/facer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FACER

Face related toolkit. This repo is still under construction to include more models.

Updates

  • [14/05/2023] Face attribute recognition model trained on CelebA is available, check it out here.
  • [04/05/2023] Face alignment model trained on IBUG300W, AFLW19, WFLW dataset is available, check it out here.
  • [27/04/2023] Face parsing model trained on CelebM dataset is available, check it out here.

Install

The easiest way to install it is using pip:

pip install git+https://github.com/FacePerceiver/facer.git@main

No extra setup needs, pretrained weights will be downloaded automatically.

If you have trouble install from source, you can try install from PyPI:

pip install pyfacer

the PyPI version is not guaranteed to be the latest version, but we will try to keep it up to date.

Face Detection

We simply wrap a retinaface detector for easy usage.

import facer

image = facer.hwc2bchw(facer.read_hwc('data/twogirls.jpg')).to(device=device)  # image: 1 x 3 x h x w

face_detector = facer.face_detector('retinaface/mobilenet', device=device)
with torch.inference_mode():
    faces = face_detector(image)

facer.show_bchw(facer.draw_bchw(image, faces))

Check this notebook for full example.

Please consider citing

@inproceedings{deng2020retinaface,
  title={Retinaface: Single-shot multi-level face localisation in the wild},
  author={Deng, Jiankang and Guo, Jia and Ververas, Evangelos and Kotsia, Irene and Zafeiriou, Stefanos},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5203--5212},
  year={2020}
}

Face Parsing

We wrap the FaRL models for face parsing.

import torch
import facer

device = 'cuda' if torch.cuda.is_available() else 'cpu'

image = facer.hwc2bchw(facer.read_hwc('data/twogirls.jpg')).to(device=device)  # image: 1 x 3 x h x w

face_detector = facer.face_detector('retinaface/mobilenet', device=device)
with torch.inference_mode():
    faces = face_detector(image)

face_parser = facer.face_parser('farl/lapa/448', device=device) # optional "farl/celebm/448"

with torch.inference_mode():
    faces = face_parser(image, faces)

seg_logits = faces['seg']['logits']
seg_probs = seg_logits.softmax(dim=1)  # nfaces x nclasses x h x w
n_classes = seg_probs.size(1)
vis_seg_probs = seg_probs.argmax(dim=1).float()/n_classes*255
vis_img = vis_seg_probs.sum(0, keepdim=True)
facer.show_bhw(vis_img)
facer.show_bchw(facer.draw_bchw(image, faces))

Check this notebook for full example.

Please consider citing

@inproceedings{zheng2022farl,
  title={General facial representation learning in a visual-linguistic manner},
  author={Zheng, Yinglin and Yang, Hao and Zhang, Ting and Bao, Jianmin and Chen, Dongdong and Huang, Yangyu and Yuan, Lu and Chen, Dong and Zeng, Ming and Wen, Fang},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={18697--18709},
  year={2022}
}

Face Alignment

We wrap the FaRL models for face alignment.

import torch
import cv2
from matplotlib import pyplot as plt

device = 'cuda' if torch.cuda.is_available() else 'cpu'

import facer
img_file = 'data/twogirls.jpg'
# image: 1 x 3 x h x w
image = facer.hwc2bchw(facer.read_hwc(img_file)).to(device=device)  

face_detector = facer.face_detector('retinaface/mobilenet', device=device)
with torch.inference_mode():
    faces = face_detector(image)

face_aligner = facer.face_aligner('farl/ibug300w/448', device=device) # optional: "farl/wflw/448", "farl/aflw19/448"

with torch.inference_mode():
    faces = face_aligner(image, faces)

img = cv2.imread(img_file)[..., ::-1]
vis_img = img.copy()
for pts in faces['alignment']:
    vis_img = facer.draw_landmarks(vis_img, None, pts.cpu().numpy())
plt.imshow(vis_img)

Check this notebook for full example.

Please consider citing

@inproceedings{zheng2022farl,
  title={General facial representation learning in a visual-linguistic manner},
  author={Zheng, Yinglin and Yang, Hao and Zhang, Ting and Bao, Jianmin and Chen, Dongdong and Huang, Yangyu and Yuan, Lu and Chen, Dong and Zeng, Ming and Wen, Fang},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={18697--18709},
  year={2022}
}

Face Attribute Recognition

We wrap the FaRL models for face attribute recognition, the model achieves 92.06% accuracy on CelebA dataset.

import sys
import torch
import facer

device = "cuda" if torch.cuda.is_available() else "cpu"

# image: 1 x 3 x h x w
image = facer.hwc2bchw(facer.read_hwc("data/girl.jpg")).to(device=device)

face_detector = facer.face_detector("retinaface/mobilenet", device=device)
with torch.inference_mode():
    faces = face_detector(image)

face_attr = facer.face_attr("farl/celeba/224", device=device)
with torch.inference_mode():
    faces = face_attr(image, faces)

labels = face_attr.labels
face1_attrs = faces["attrs"][0] # get the first face's attributes

print(labels)

for prob, label in zip(face1_attrs, labels):
    if prob > 0.5:
        print(label, prob.item())

Check this notebook for full example.

Please consider citing

@inproceedings{zheng2022farl,
  title={General facial representation learning in a visual-linguistic manner},
  author={Zheng, Yinglin and Yang, Hao and Zhang, Ting and Bao, Jianmin and Chen, Dongdong and Huang, Yangyu and Yuan, Lu and Chen, Dong and Zeng, Ming and Wen, Fang},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={18697--18709},
  year={2022}
}

About

Face analysis tools for modern research, equipped with state-of-the-art Face Parsing and Face Alignment

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%