forked from apache/iceberg
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Flink: backport PR apache#9321 for range partitioner on map statistics (
- Loading branch information
Showing
7 changed files
with
2,064 additions
and
0 deletions.
There are no files selected for viewing
199 changes: 199 additions & 0 deletions
199
...link/src/jmh/java/org/apache/iceberg/flink/sink/shuffle/MapRangePartitionerBenchmark.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
package org.apache.iceberg.flink.sink.shuffle; | ||
|
||
import java.util.List; | ||
import java.util.Map; | ||
import java.util.NavigableMap; | ||
import java.util.concurrent.ThreadLocalRandom; | ||
import org.apache.flink.table.data.GenericRowData; | ||
import org.apache.flink.table.data.RowData; | ||
import org.apache.iceberg.Schema; | ||
import org.apache.iceberg.SortKey; | ||
import org.apache.iceberg.SortOrder; | ||
import org.apache.iceberg.relocated.com.google.common.base.Preconditions; | ||
import org.apache.iceberg.relocated.com.google.common.collect.Lists; | ||
import org.apache.iceberg.relocated.com.google.common.collect.Maps; | ||
import org.apache.iceberg.types.Types; | ||
import org.openjdk.jmh.annotations.Benchmark; | ||
import org.openjdk.jmh.annotations.BenchmarkMode; | ||
import org.openjdk.jmh.annotations.Fork; | ||
import org.openjdk.jmh.annotations.Measurement; | ||
import org.openjdk.jmh.annotations.Mode; | ||
import org.openjdk.jmh.annotations.Scope; | ||
import org.openjdk.jmh.annotations.Setup; | ||
import org.openjdk.jmh.annotations.State; | ||
import org.openjdk.jmh.annotations.TearDown; | ||
import org.openjdk.jmh.annotations.Threads; | ||
import org.openjdk.jmh.annotations.Warmup; | ||
import org.openjdk.jmh.infra.Blackhole; | ||
|
||
@Fork(1) | ||
@State(Scope.Benchmark) | ||
@Warmup(iterations = 3) | ||
@Measurement(iterations = 5) | ||
@BenchmarkMode(Mode.SingleShotTime) | ||
public class MapRangePartitionerBenchmark { | ||
private static final String CHARS = | ||
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_-.!?"; | ||
private static final int SAMPLE_SIZE = 100_000; | ||
private static final Schema SCHEMA = | ||
new Schema( | ||
Types.NestedField.required(1, "id", Types.IntegerType.get()), | ||
Types.NestedField.required(2, "name2", Types.StringType.get()), | ||
Types.NestedField.required(3, "name3", Types.StringType.get()), | ||
Types.NestedField.required(4, "name4", Types.StringType.get()), | ||
Types.NestedField.required(5, "name5", Types.StringType.get()), | ||
Types.NestedField.required(6, "name6", Types.StringType.get()), | ||
Types.NestedField.required(7, "name7", Types.StringType.get()), | ||
Types.NestedField.required(8, "name8", Types.StringType.get()), | ||
Types.NestedField.required(9, "name9", Types.StringType.get())); | ||
|
||
private static final SortOrder SORT_ORDER = SortOrder.builderFor(SCHEMA).asc("id").build(); | ||
private static final SortKey SORT_KEY = new SortKey(SCHEMA, SORT_ORDER); | ||
|
||
private MapRangePartitioner partitioner; | ||
private RowData[] rows; | ||
|
||
@Setup | ||
public void setupBenchmark() { | ||
NavigableMap<Integer, Long> weights = longTailDistribution(100_000, 24, 240, 100, 2.0); | ||
Map<SortKey, Long> mapStatistics = Maps.newHashMapWithExpectedSize(weights.size()); | ||
weights.forEach( | ||
(id, weight) -> { | ||
SortKey sortKey = SORT_KEY.copy(); | ||
sortKey.set(0, id); | ||
mapStatistics.put(sortKey, weight); | ||
}); | ||
|
||
MapDataStatistics dataStatistics = new MapDataStatistics(mapStatistics); | ||
this.partitioner = | ||
new MapRangePartitioner( | ||
SCHEMA, SortOrder.builderFor(SCHEMA).asc("id").build(), dataStatistics, 2); | ||
|
||
List<Integer> keys = Lists.newArrayList(weights.keySet().iterator()); | ||
long[] weightsCDF = new long[keys.size()]; | ||
long totalWeight = 0; | ||
for (int i = 0; i < keys.size(); ++i) { | ||
totalWeight += weights.get(keys.get(i)); | ||
weightsCDF[i] = totalWeight; | ||
} | ||
|
||
// pre-calculate the samples for benchmark run | ||
this.rows = new GenericRowData[SAMPLE_SIZE]; | ||
for (int i = 0; i < SAMPLE_SIZE; ++i) { | ||
long weight = ThreadLocalRandom.current().nextLong(totalWeight); | ||
int index = binarySearchIndex(weightsCDF, weight); | ||
rows[i] = | ||
GenericRowData.of( | ||
keys.get(index), | ||
randomString("name2-"), | ||
randomString("name3-"), | ||
randomString("name4-"), | ||
randomString("name5-"), | ||
randomString("name6-"), | ||
randomString("name7-"), | ||
randomString("name8-"), | ||
randomString("name9-")); | ||
} | ||
} | ||
|
||
@TearDown | ||
public void tearDownBenchmark() {} | ||
|
||
@Benchmark | ||
@Threads(1) | ||
public void testPartitionerLongTailDistribution(Blackhole blackhole) { | ||
for (int i = 0; i < SAMPLE_SIZE; ++i) { | ||
blackhole.consume(partitioner.partition(rows[i], 128)); | ||
} | ||
} | ||
|
||
private static String randomString(String prefix) { | ||
int length = ThreadLocalRandom.current().nextInt(200); | ||
byte[] buffer = new byte[length]; | ||
|
||
for (int i = 0; i < length; i += 1) { | ||
buffer[i] = (byte) CHARS.charAt(ThreadLocalRandom.current().nextInt(CHARS.length())); | ||
} | ||
|
||
return prefix + new String(buffer); | ||
} | ||
|
||
/** find the index where weightsUDF[index] < weight && weightsUDF[index+1] >= weight */ | ||
private static int binarySearchIndex(long[] weightsUDF, long target) { | ||
Preconditions.checkArgument( | ||
target < weightsUDF[weightsUDF.length - 1], | ||
"weight is out of range: total weight = %s, search target = %s", | ||
weightsUDF[weightsUDF.length - 1], | ||
target); | ||
int start = 0; | ||
int end = weightsUDF.length - 1; | ||
while (start < end) { | ||
int mid = (start + end) / 2; | ||
if (weightsUDF[mid] < target && weightsUDF[mid + 1] >= target) { | ||
return mid; | ||
} | ||
|
||
if (weightsUDF[mid] >= target) { | ||
end = mid - 1; | ||
} else if (weightsUDF[mid + 1] < target) { | ||
start = mid + 1; | ||
} | ||
} | ||
return start; | ||
} | ||
|
||
/** Key is the id string and value is the weight in long value. */ | ||
private static NavigableMap<Integer, Long> longTailDistribution( | ||
long startingWeight, | ||
int longTailStartingIndex, | ||
int longTailLength, | ||
long longTailBaseWeight, | ||
double weightRandomJitterPercentage) { | ||
|
||
NavigableMap<Integer, Long> weights = Maps.newTreeMap(); | ||
|
||
// first part just decays the weight by half | ||
long currentWeight = startingWeight; | ||
for (int index = 0; index < longTailStartingIndex; ++index) { | ||
double jitter = ThreadLocalRandom.current().nextDouble(weightRandomJitterPercentage / 100); | ||
long weight = (long) (currentWeight * (1.0 + jitter)); | ||
weight = weight > 0 ? weight : 1; | ||
weights.put(index, weight); | ||
if (currentWeight > longTailBaseWeight) { | ||
currentWeight = currentWeight / 2; | ||
} | ||
} | ||
|
||
// long tail part | ||
for (int index = longTailStartingIndex; | ||
index < longTailStartingIndex + longTailLength; | ||
++index) { | ||
long longTailWeight = | ||
(long) | ||
(longTailBaseWeight | ||
* ThreadLocalRandom.current().nextDouble(weightRandomJitterPercentage)); | ||
longTailWeight = longTailWeight > 0 ? longTailWeight : 1; | ||
weights.put(index, longTailWeight); | ||
} | ||
|
||
return weights; | ||
} | ||
} |
Oops, something went wrong.