Skip to content

To comparing training speed on "multi gpu env" with some Deep Learning framework; keras, chainer and tensorflow, Train deep networks which are resnet and AllConvolutionalNet.

Notifications You must be signed in to change notification settings

yumatsuoka/comp_DNNfw

Repository files navigation

deep learning with multi gpu on some framework

Run neural network on multi gpu

Requiremets

  • chainer==1.23.0
  • conda3==4.3.8
  • keras==2.0.3
  • mxnet-cu80==0.9.5
  • scikit-learn==0.18.1
  • tensorflow-gpu==1.0.1

How to use

dataset = 'cifar10'
fm = 'tf'

# download dataset
cifar = cifar10.py if dataset == 'cifar10' else cifar100.py
python cifar

# run training
framework = {'tf': tf_pure_cifar.py, 'tfslim': tf_slim_learn_cifar.py,
             'chainer': chainer_cifar.py, 'keras': keras_cifar.py}
python framework[fm]

Code

  • chainer_cifar.py => run chainer code
  • chainer_model.py => note neural net model
  • cifar10.py => download cifar10 datset and make it dict
  • cifar100.py => download cifar100 datset and make it dict
  • keras_cifar.py => run chainer code
  • keras_make_parallel.py => note multi gpu processing
  • keras_model.py => note neural net model
  • ln_cifar_dataset.py => make synbolic link about cifar dataset
  • run_experiment.py => run some test to observe gpu trianing on some env
  • tf_pure_cifar.py => run neural net model with tensorflow contrib API
  • tf_pure_datafeeder.py => note datafeeder(this is future work)
  • tf_pure_model.py => note neural net model with the tensorflow API
  • tf_pure_trainer.py => note trainer on single and multi gpu(can't run multi one)

About

To comparing training speed on "multi gpu env" with some Deep Learning framework; keras, chainer and tensorflow, Train deep networks which are resnet and AllConvolutionalNet.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages