This is the PyTorch implementation of the following paper: Ruolin Su, Ting-Wei Wu, Biing-Hwang Juang. Act-Aware Slot-Value Predicting in Multi-Domain Dialogue State Tracking. INTERSPEECH 2021.
pip install -r requirements.txt
wget https://raw.githubusercontent.com/jasonwu0731/trade-dst/master/utils/mapping.pair
python create_data.py
python multiwoz_format.py all ./data ./data
In environment allennlp>=1.0.0
to calculate ELMO embeddings. See requirements.txt for details.
mkdir ./data/elmo_embeddings
./calc_elmo.sh ./data ./data/elmo_embeddings
- Train our hybrid model (time- and num-related slots as non-categorical)
./train_sp_act.sh
- Train our categorical-only model
./train_nosp_act.sh
./predict.sh ./data/prediction_act.json
To evaluate on the dev set, change the target file to ./data/preddev_act.json.
If you want to cite this paper, the bibtex is listed below:
@inproceedings{su21_interspeech,
author={Ruolin Su and Ting-Wei Wu and Biing-Hwang Juang},
title={{Act-Aware Slot-Value Predicting in Multi-Domain Dialogue State Tracking}},
year=2021,
booktitle={Proc. Interspeech 2021},
pages={236--240},
doi={10.21437/Interspeech.2021-138}
}