Skip to content

Commit

Permalink
Update predict.py
Browse files Browse the repository at this point in the history
  • Loading branch information
yashasvini121 authored Oct 19, 2024
1 parent 7f86ba2 commit 876b138
Showing 1 changed file with 9 additions and 27 deletions.
36 changes: 9 additions & 27 deletions models/text_sumarization/predict.py
Original file line number Diff line number Diff line change
@@ -1,31 +1,13 @@
import streamlit as st
from transformers import pipeline
import streamlit as st

# Title of the web app
st.title("Text Summarization Tool")

# Load the summarization model
@st.cache_resource(show_spinner=True) # Cache the model loading for faster performance
def load_summarizer():
return pipeline("summarization", model="t5-small")

summarizer = load_summarizer()

# Instructions for users
st.write("Enter the text you'd like to summarize (minimum 50 words).")

# Create a text area for the user to input text
user_input = st.text_area("Input Text", height=200)

# A button to initiate the summarization process
if st.button("Summarize"):
if len(user_input.split()) < 50:
st.warning("Please enter at least 50 words for summarization.")
else:
# Show a spinner while the summarization is being processed
with st.spinner("Summarizing..."):
# Generate the summary
summary = summarizer(user_input, max_length=150, min_length=30, do_sample=False)
# Display the summarized text
st.subheader("Summary:")
st.write(summary[0]['summary_text'])
"""Load and cache the text summarization pipeline model."""
return pipeline("summarization", model="t5-small")

def generate_summary(text: str) -> str:
"""Generate a summary for the given input text."""
summarizer = load_summarizer()
summary = summarizer(text, max_length=150, min_length=30, do_sample=False)
return summary[0]["summary_text"]

0 comments on commit 876b138

Please sign in to comment.