-
Notifications
You must be signed in to change notification settings - Fork 72
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into Insurance_Cost_Predictor
- Loading branch information
Showing
8 changed files
with
408 additions
and
141 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
import pandas as pd | ||
from sklearn.model_selection import train_test_split, cross_val_score | ||
from sklearn.preprocessing import StandardScaler, OneHotEncoder | ||
from sklearn.compose import ColumnTransformer | ||
from sklearn.pipeline import Pipeline | ||
from sklearn.feature_selection import RFE | ||
from sklearn.linear_model import LinearRegression | ||
from sklearn.ensemble import RandomForestRegressor | ||
import warnings | ||
import pickle | ||
from .ModelEvaluation import ModelEvaluation | ||
import os | ||
import logging | ||
import streamlit as st | ||
import numpy as np | ||
warnings.filterwarnings("ignore") | ||
|
||
# Define the directory for logs | ||
log_directory = 'models/house_price/logs' | ||
os.makedirs(log_directory, exist_ok=True) # Create the directory if it doesn't exist | ||
|
||
# Set up logging | ||
log_file = os.path.join(log_directory, 'model_training.log') | ||
logging.basicConfig( | ||
filename=log_file, | ||
level=logging.INFO, | ||
format='%(asctime)s - %(levelname)s - %(message)s' | ||
) | ||
|
||
df = pd.read_csv("models/house_price/data/housing.csv") | ||
original_df = df.copy(deep=True) | ||
|
||
# Target and Feature Identification | ||
target = "price" | ||
features = [col for col in df.columns if col != target] | ||
|
||
# Separates numerical and categorical features based on unique values | ||
nu = df[features].nunique() | ||
numerical_features = [col for col in features if nu[col] > 16] | ||
categorical_features = [col for col in features if nu[col] <= 16] | ||
|
||
# Removing outliers using IQR | ||
def remove_outliers(df, numerical_features): | ||
for feature in numerical_features: | ||
Q1 = df[feature].quantile(0.25) | ||
Q3 = df[feature].quantile(0.75) | ||
IQR = Q3 - Q1 | ||
df = df[(df[feature] >= (Q1 - 1.5 * IQR)) & (df[feature] <= (Q3 + 1.5 * IQR))] | ||
return df.reset_index(drop=True) | ||
|
||
|
||
# Handling missing values | ||
def handle_missing_values(df): | ||
null_summary = df.isnull().sum() | ||
null_percentage = (null_summary / df.shape[0]) * 100 | ||
return pd.DataFrame( | ||
{"Total Null Values": null_summary, "Percentage": null_percentage} | ||
).sort_values(by="Percentage", ascending=False) | ||
|
||
|
||
# Removes outliers from numerical features | ||
df = remove_outliers(df, numerical_features) | ||
|
||
# Filters categorical features without missing values | ||
null_value_summary = handle_missing_values(df) | ||
valid_categorical_features = [ | ||
col | ||
for col in categorical_features | ||
if col not in null_value_summary[null_value_summary["Percentage"] != 0].index | ||
] | ||
|
||
# Encoding categorical features | ||
def encode_categorical_features(df, categorical_features): | ||
for feature in categorical_features: | ||
# Binary encoding for features with 2 unique values | ||
if df[feature].nunique() == 2: | ||
df[feature] = pd.get_dummies(df[feature], drop_first=True, prefix=feature) | ||
# Dummy encoding for features with more than 2 unique values | ||
elif 2 < df[feature].nunique() <= 16: | ||
df = pd.concat( | ||
[ | ||
df.drop([feature], axis=1), | ||
pd.get_dummies(df[feature], drop_first=True, prefix=feature), | ||
], | ||
axis=1, | ||
) | ||
return df | ||
|
||
df = encode_categorical_features(df, valid_categorical_features) | ||
|
||
# Renames columns to avoid invalid characters | ||
df.columns = [col.replace("-", "_").replace(" ", "_") for col in df.columns] | ||
|
||
# Splitting the data into training & testing sets | ||
X = df.drop([target], axis=1) | ||
Y = df[target] | ||
Train_X, Test_X, Train_Y, Test_Y = train_test_split( | ||
X, Y, train_size=0.8, test_size=0.2, random_state=100 | ||
) | ||
|
||
# Feature Scaling (Standardization) | ||
std = StandardScaler() | ||
Train_X_std = pd.DataFrame(std.fit_transform(Train_X), columns=X.columns) | ||
Test_X_std = pd.DataFrame(std.transform(Test_X), columns=X.columns) | ||
|
||
#Random Forest Algorithm | ||
rf_model = RandomForestRegressor(random_state=42, n_estimators=200, max_depth=8, min_samples_split=12) | ||
rf_model.fit(Train_X_std, Train_Y) | ||
|
||
|
||
pred_train = rf_model.predict(Train_X_std) | ||
pred_test = rf_model.predict(Test_X_std) | ||
|
||
# Calculate RMSE for train and test sets | ||
# train_rmse = np.sqrt(mean_squared_error(Train_Y, pred_train)) | ||
# test_rmse = np.sqrt(mean_squared_error(Test_Y, pred_test)) | ||
|
||
|
||
def prepare_input_data( | ||
area, | ||
mainroad, | ||
guestroom, | ||
basement, | ||
hotwaterheating, | ||
airconditioning, | ||
prefarea, | ||
additional_bedrooms, | ||
bathrooms, | ||
stories, | ||
parking, | ||
furnishingstatus, | ||
): | ||
# Creates a dictionary for the input features | ||
input_data = { | ||
"area": [area], | ||
"mainroad": True if mainroad == "Yes" else False, | ||
"guestroom": True if guestroom == "Yes" else False, | ||
"basement": True if basement == "Yes" else False, | ||
"hotwaterheating": True if hotwaterheating == "Yes" else False, | ||
"airconditioning": True if airconditioning == "Yes" else False, | ||
"prefarea": True if prefarea == "Yes" else False, | ||
"bedrooms_2": additional_bedrooms == 2, | ||
"bedrooms_3": additional_bedrooms == 3, | ||
"bedrooms_4": additional_bedrooms == 4, | ||
"bedrooms_5": additional_bedrooms == 5, | ||
"bedrooms_6": additional_bedrooms == 6, | ||
"bathrooms_2": bathrooms == 2, | ||
"bathrooms_3": bathrooms == 3, | ||
"bathrooms_4": bathrooms == 4, | ||
"stories_2": stories == 2, | ||
"stories_3": stories == 3, | ||
"stories_4": stories == 4, | ||
"parking_1": parking == 1, | ||
"parking_2": parking == 2, | ||
"parking_3": parking == 3, | ||
"furnishingstatus_semi_furnished": furnishingstatus == "semi_furnished", | ||
"furnishingstatus_unfurnished": furnishingstatus == "unfurnished", | ||
} | ||
|
||
return pd.DataFrame(input_data) | ||
|
||
# Note: Not removing this fxn because of the warning in predict.py file | ||
|
||
|
||
### Final Endpoint ### | ||
def get_predicted(area=0, mainroad=False, guestroom=False, basement=False, hotwaterheating=False, | ||
airconditioning=False, prefarea=False,bedrooms=0, bathrooms=2,stories=1, parking=1, | ||
furnishingstatus="semi_furnished",): | ||
|
||
input_df = prepare_input_data(area, mainroad, guestroom,basement, hotwaterheating, airconditioning, prefarea, | ||
bedrooms, bathrooms, stories, parking, furnishingstatus) | ||
|
||
input_std = pd.DataFrame(std.transform(input_df), columns=input_df.columns) | ||
predicted_price = rf_model.predict(input_std) | ||
return round(predicted_price[0],2) | ||
|
||
def save_model(): | ||
# todo: Ask the user for the model name, and warn that the model will be overwritten | ||
|
||
with open("./saved_models/model_02.pkl", "wb") as file: | ||
pickle.dump(rf_model, file) | ||
|
||
|
||
def save_scaler(): | ||
with open("./saved_models/scaler_02.pkl", "wb") as file: | ||
pickle.dump(std, file) | ||
|
||
|
||
def get_evaluator(): | ||
evaluator = ModelEvaluation(rf_model, Train_X_std, Train_Y, Test_X_std, Test_Y) | ||
return evaluator | ||
|
||
if __name__ == "__main__": | ||
save_model() | ||
save_scaler() | ||
# model_evaluation() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters