out_video.mp4
This project aims to perform gaze estimation using several deep learning models like ResNet, MobileNet v2, and MobileOne. It supports both classification and regression for predicting gaze direction. Built on top of L2CS-Net, the project includes additional pre-trained models and refined code for better performance and flexibility.
- ONNX Inference: Export pytorch weights to ONNX and ONNX runtime inference.
- ResNet: Deep Residual Networks - Enables deeper networks with better accuracy through residual learning.
- MobileNet v2: Inverted Residuals and Linear Bottlenecks - Efficient model for mobile applications, balancing performance and computational cost.
- MobileOne (s0-s4): An Improved One millisecond Mobile Backbone - Achieves near-instant inference times, ideal for real-time mobile applications.
- Face Detection: SCFRD - Sample and Computation Redistribution for Efficient Face Detection (SCRFD) model for efficient face detection.
- Clone the repository:
git clone https://github.com/yakyo/gaze-estimation.git
cd gaze-estimation
- Install the required dependencies:
pip install -r requirements.txt
-
Download weight files:
a) Download weights from the following links:
Model Weights Size Epochs MAE ResNet-18 resnet18.pt 43 MB 200 12.84 ResNet-34 resnet34.pt 81.6 MB 200 11.33 ResNet-50 resnet50.pt 91.3 MB 200 11.34 MobileNet V2 mobilenetv2.pt 9.59 MB 200 13.07 MobileOne S0 mobileone_s0_fused.pt 4.8 MB 200 12.58 MobileOne S1 mobileone_s1_fused.pt xx MB 200 * MobileOne S2 mobileone_s2_fused.pt xx MB 200 * MobileOne S3 mobileone_s3_fused.pt xx MB 200 * MobileOne S4 mobileone_s4_fused.pt xx MB 200 * '*' - soon will be uploaded (due to limited computing resources I cannot publish rest of the weights, but you still can train them with given code).
b) Run the command below to download weights to the
weights
directory (Linux):sh download.sh [model_name] resnet18 resnet34 resnet50 mobilenetv2 mobileone_s0 mobileone_s1 mobileone_s2 mobileone_s3 mobileone_s4
Dataset folder structure:
data/
βββ Gaze360/
β βββ Image/
β βββ Label/
βββ MPIIFaceGaze/
βββ Image/
βββ Label/
Gaze360
- Link to download dataset: https://gaze360.csail.mit.edu/download.php
- Data pre-processing code: https://phi-ai.buaa.edu.cn/Gazehub/3D-dataset/#gaze360
MPIIGaze
- Link to download dataset: download page
- Data pre-processing code: https://phi-ai.buaa.edu.cn/Gazehub/3D-dataset/#mpiifacegaze
python main.py --data [dataset_path] --dataset [dataset_name] --arch [architecture_name]
main.py
arguments:
usage: main.py [-h] [--data DATA] [--dataset DATASET] [--output OUTPUT] [--checkpoint CHECKPOINT] [--num-epochs NUM_EPOCHS] [--batch-size BATCH_SIZE] [--arch ARCH] [--alpha ALPHA] [--lr LR] [--num-workers NUM_WORKERS]
Gaze estimation training.
options:
-h, --help show this help message and exit
--data DATA Directory path for gaze images.
--dataset DATASET Dataset name, available `gaze360`, `mpiigaze`.
--output OUTPUT Path of output models.
--checkpoint CHECKPOINT
Path to checkpoint for resuming training.
--num-epochs NUM_EPOCHS
Maximum number of training epochs.
--batch-size BATCH_SIZE
Batch size.
--arch ARCH Network architecture, currently available: resnet18/34/50, mobilenetv2, mobileone_s0-s4.
--alpha ALPHA Regression loss coefficient.
--lr LR Base learning rate.
--num-workers NUM_WORKERS
Number of workers for data loading.
python evaluate.py --data [dataset_path] --dataset [dataset_name] --weights [weights_path] --arch [architecture_name]
evaluate.py
arguments:
usage: evaluate.py [-h] [--data DATA] [--dataset DATASET] [--weights WEIGHTS] [--batch-size BATCH_SIZE] [--arch ARCH] [--num-workers NUM_WORKERS]
Gaze estimation evaluation.
options:
-h, --help show this help message and exit
--data DATA Directory path for gaze images.
--dataset DATASET Dataset name, available `gaze360`, `mpiigaze`
--weights WEIGHTS Path to model weight for evaluation.
--batch-size BATCH_SIZE
Batch size.
--arch ARCH Network architecture, currently available: resnet18/34/50, mobilenetv2, mobileone_s0-s4.
--num-workers NUM_WORKERS
Number of workers for data loading.
detect.py --arch [arch_name] --gaze-weights [path_gaze_estimation_weights] --face-weights [face_det_weights] --view --input [input_file] --output [output_file] --dataset [dataset_name]
detect.py
arguments:
usage: detect.py [-h] [--arch ARCH] [--gaze-weights GAZE_WEIGHTS] [--face-weights FACE_WEIGHTS] [--view] [--input INPUT] [--output OUTPUT] [--dataset DATASET]
Gaze Estimation Inference Arguments
options:
-h, --help show this help message and exit
--arch ARCH Model name, default `resnet18`
--gaze-weights GAZE_WEIGHTS
Path to gaze esimation model weights
--face-weights FACE_WEIGHTS
Path to face detection model weights
--view Display the inference results
--input INPUT Path to input video file
--output OUTPUT Path to save output file
--dataset DATASET Dataset name to get dataset related configs
If you use this work in your research, please cite it as:
Valikhujaev, Y. (2024). MobileGaze: Pre-trained mobile nets for Gaze-Estimation. Zenodo. https://doi.org/10.5281/zenodo.14257640
Alternatively, in BibTeX format:
@misc{valikhujaev2024mobilegaze,
author = {Valikhujaev, Y.},
title = {MobileGaze: Pre-trained mobile nets for Gaze-Estimation},
year = {2024},
publisher = {Zenodo},
doi = {10.5281/zenodo.14257640},
url = {https://doi.org/10.5281/zenodo.14257640}
}
- This project is built on top of L2CS-Net. Most of the code parts have been re-written for reproducibility and adaptability. Several additional backbones are provided with pre-trained weights.
- https://github.com/apple/ml-mobileone
- https://github.com/yakhyo/face-reidentification (used for inference, modified from insightface)