Skip to content

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

License

Notifications You must be signed in to change notification settings

xinlin-xiao/Swin-Transformer-Object-Detection

 
 

Repository files navigation

Swin Transformer for Object Detection

This repo contains the supported code and configuration files to reproduce object detection results of Swin Transformer. It is based on mmdetection.

Updates

05/11/2021 Models for MoBY are released

04/12/2021 Initial commits

Results and Models

Mask R-CNN

Backbone Pretrain Lr Schd box mAP mask mAP #params FLOPs config log model
Swin-T ImageNet-1K 1x 43.7 39.8 48M 267G config github/baidu github/baidu
Swin-T ImageNet-1K 3x 46.0 41.6 48M 267G config github/baidu github/baidu
Swin-S ImageNet-1K 3x 48.5 43.3 69M 359G config github/baidu github/baidu

Cascade Mask R-CNN

Backbone Pretrain Lr Schd box mAP mask mAP #params FLOPs config log model
Swin-T ImageNet-1K 1x 48.1 41.7 86M 745G config github/baidu github/baidu
Swin-T ImageNet-1K 3x 50.4 43.7 86M 745G config github/baidu github/baidu
Swin-S ImageNet-1K 3x 51.9 45.0 107M 838G config github/baidu github/baidu
Swin-B ImageNet-1K 3x 51.9 45.0 145M 982G config github/baidu github/baidu

RepPoints V2

Backbone Pretrain Lr Schd box mAP mask mAP #params FLOPs config log model
Swin-T ImageNet-1K 3x 50.0 - 45M 283G config github github

Mask RepPoints V2

Backbone Pretrain Lr Schd box mAP mask mAP #params FLOPs config log model
Swin-T ImageNet-1K 3x 50.4 43.8 47M 292G config github github

Notes:

Results of MoBY with Swin Transformer

Mask R-CNN

Backbone Pretrain Lr Schd box mAP mask mAP #params FLOPs config log model
Swin-T ImageNet-1K 1x 43.6 39.6 48M 267G config github/baidu github/baidu
Swin-T ImageNet-1K 3x 46.0 41.7 48M 267G config github/baidu github/baidu

Cascade Mask R-CNN

Backbone Pretrain Lr Schd box mAP mask mAP #params FLOPs config log model
Swin-T ImageNet-1K 1x 48.1 41.5 86M 745G config github/baidu github/baidu
Swin-T ImageNet-1K 3x 50.2 43.5 86M 745G config github/baidu github/baidu

Notes:

  • The drop path rate needs to be tuned for best practice.
  • MoBY pre-trained models can be downloaded from MoBY with Swin Transformer.

Usage

Installation

Please refer to get_started.md for installation and dataset preparation.

Inference

# single-gpu testing
python tools/test.py <CONFIG_FILE> <DET_CHECKPOINT_FILE> --eval bbox segm

# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <DET_CHECKPOINT_FILE> <GPU_NUM> --eval bbox segm

Training

To train a detector with pre-trained models, run:

# single-gpu training
python tools/train.py <CONFIG_FILE> --cfg-options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments] 

For example, to train a Cascade Mask R-CNN model with a Swin-T backbone and 8 gpus, run:

tools/dist_train.sh configs/swin/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py 8 --cfg-options model.pretrained=<PRETRAIN_MODEL> 

Note: use_checkpoint is used to save GPU memory. Please refer to this page for more details.

Apex (optional):

We use apex for mixed precision training by default. To install apex, run:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

If you would like to disable apex, modify the type of runner as EpochBasedRunner and comment out the following code block in the configuration files:

# do not use mmdet version fp16
fp16 = None
optimizer_config = dict(
    type="DistOptimizerHook",
    update_interval=1,
    grad_clip=None,
    coalesce=True,
    bucket_size_mb=-1,
    use_fp16=True,
)

Citing Swin Transformer

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Other Links

Image Classification: See Swin Transformer for Image Classification.

Semantic Segmentation: See Swin Transformer for Semantic Segmentation.

Self-Supervised Learning: See MoBY with Swin Transformer.

Video Recognition, See Video Swin Transformer.

About

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.8%
  • Other 0.2%