Skip to content

xindubawukong/LQ-Nets_Pytorch

Repository files navigation

Overview

This is the unofficial Pytorch implementation of paper LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks.

设$K$为要量化到的bit数。量化函数为:$Q(x, \mathbf{v})=\mathbf{v^T}\mathbf{e}_l$,其中$\mathbf{v}\in\mathbb{R}^K$,$l=1,...,2^K$,$\mathbf{e}_l\in{-1,1}^K$。也就是说用$K$个实数值来组成$x$。这样仍然能保证向量乘的过程中使用xonr-count,同时扩大了解空间。

只量化权重效果很好。同时量化权重和激活值效果不如论文里说的。不知道为啥。

Usage

python train.py

There're several arguments to pass but there's no time to explain them.

resnet18的lr最开始设成0.01

References

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages