Skip to content

wjmaddox/online_vargp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Conditioning Sparse Variational Gaussian Processes for Online Decision-making

This repository contains a PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Introduction

Online variational conditioning (OVC) provides closed form conditioning (e.g. updating a model's posterior predictive distribution after having observed new data points) for stochastic variational Gaussian processes. OVC enables the development of ``fantasization" (predicting on data and then conditioning on a random posterior sample) for variational GPs, thereby enabling SVGPs to be used for the first time in advanced, look-ahead acquisitions such as the batch knowledge gradient, entropy search, and look-ahead Thompson sampling (which we introduce).

In this repo, we provide an implementation of a SVGP model with OVC hooked up as the get_fantasy_model function, allowing it to be natively used with any advanced acquisition function in BoTorch (see the experiments in the experiments/std_bayesopt folder).

Installation

python setup.py develop

See requirements.txt for our setup. We require Pytorch >= 1.8.0 and used the master versions of GPyTorch and BoTorch installed from source.

File Structure

.
+-- volatilitygp/
|   +-- likelihoods/
|   |   +-- _one_dimensional_likelihood.py (Implementation of Newton iteration and the base class for the others)
|   |   +-- bernoulli_likelihood.py
|   |   +-- binomial_likelihood.py
|   |   +-- fixed_noise_gaussian_likelihood.py
|   |   +-- multivariate_normal_likelihood.py
|   |   +-- poisson_likelihood.py
|   |   +-- volatility_likelihood.py
|   +-- mlls/
|   |   +-- patched_variational_elbo.py (patched version of elbo to allow sumMLL training)
|   +-- models/
|   |   +-- model_list_gp.py (patched version of ModelListGP to allow for SVGP models)
|   |   +-- single_task_variational_gp.py (Our basic model class for SVGPs)
|   +-- utils/
|   |   +-- pivoted_cholesky.py (our pivoted cholesky implementation for inducing point init)
+-- experiments/
|   +-- active_learning/ (malaria experiment)
|   |   +-- qnIPV_experiment.py (main script)
|   +-- highd_bo/ (rover experiments)
|   |   +-- run_trbo.py (turbo script)
|   |   +-- run_gibbon.py (global model script, Fig 10c)
|   |   +-- rover_conditioning_experiment.ipynb (Fig 10b)
|   |   +-- trbo.py (turbo implementation)
|   +-- hotspots/ (schistomiasis experiment)
|   |   +-- hotspots.py (main script)
|   +-- mujoco/ (mujoco experiments on swimmer and hopper)
|   |   +-- functions/ (mujoco functions)
|   |   +-- lamcts/ (LA-MCTS implementation)
|   |   +-- turbo_1/ (TurBO implementation)
|   |   run.py (main script)
|   +-- pref_learning/ (preference learning experiment)
|   |   +-- run_pref_learning_exp.py (main script)
|   +-- std_bayesopt/ (bayes opt experiments)
|   |   +-- hartmann6.py (constrained hartmann6)
|   |   +-- lcls_optimization.py (laser)
|   |   +-- poisson_hartmann6.py (poisson constrained hartmann6)
|   |   +-- utils.py (model definition helpers)
|   |   +-- weighted_gp_benchmark/ (python 3 version of WOGP)
|   |   |   +-- lcls_opt_script.py (main script)
+-- tests/ (assorted unit tests for the volatilitygp package)

Commands

Please see each experiment folder for the larger scale experiments.

The understanding experiments can be found in:

  • Figure 1a-b: notebooks/svgp_fantasization_plotting.ipynb
  • Figure 1c: notebooks/SABR_vol_plotting.ipynb
  • Figure 2b-d: experiments/std_bayesopt/knowledge_gradient_branin_plotting.ipynb
  • Figure 6: notebooks/ssgp_port.ipynb
  • Figure 7: notebooks/ssgp_time_series_testing_pivcholesky.ipynb
  • Figure 8: notebooks/streaming_bananas_plots.ipynb
  • Figure 10b: experiments/highd_bo/rover_conditioning_experiment.ipynb

Code Credits and References

  • BoTorch (https://botorch.org). Throughout, many examples were inspired by assorted BoTorch tutorials, while we directly compare to Botorch single task GPs.
  • GPyTorch (https://gpytorch.ai). Our implementation of SVGPs rests on this implementation.
  • LA-MCTS code comes from here
  • laser WOGP code comes from here
  • hotspots data comes from here
  • malaria active learning script comes from here. Data can be downloaded from here.

About

Online variational GPs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •