-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
eeddf42
commit fe59c47
Showing
1 changed file
with
210 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
+++ | ||
weight = -4 | ||
image = '' | ||
categories = ['大学学习'] | ||
date = '2024-12-17T14:28:43+08:00' | ||
title = '大学物理 B 期末复习知识点' | ||
description = '大学物理 B 的一些重要公式归纳总结(持续更新中)' | ||
tags = ['大学物理'] | ||
lastmod = '2024-12-17T15:41:43+08:00' | ||
+++ | ||
|
||
## 热学 | ||
|
||
### 理想气体物态方程 | ||
|
||
$$ | ||
pV=NkT \\ | ||
pV=\nu RT | ||
$$ | ||
|
||
其中 $N$ 为气体分子数,$\nu$ 为气体物质的量。 | ||
|
||
### 理想气体压强公式 | ||
|
||
#### 分子平均平动动能 | ||
|
||
$$ | ||
\overline{\varepsilon}_{\mathrm{k}}=\frac{1}{2}m\overline{v^2}=\frac{3}{2}kT | ||
$$ | ||
|
||
其中 $m$ 为单个分子的质量。 | ||
|
||
#### 理想气体压强公式 | ||
|
||
$$ | ||
p=\frac{1}{3}nm\overline{v^2}=\frac{2}{3}n\overline{\varepsilon}_{\mathrm{k}} | ||
$$ | ||
|
||
其中 $n$ 为单位体积内的分子数。 | ||
|
||
### 理想气体内能 | ||
|
||
物质的量为 $\nu$ 的理想气体的内能为 | ||
|
||
$$ | ||
E=\frac{i}{2}\nu RT=\frac{i}{2}pV | ||
$$ | ||
|
||
其中 $i$ 为分子自由度。 | ||
|
||
<table> | ||
<tr> | ||
<td rowspan="2">分子类型</td> | ||
<td rowspan="2">单原子分子</td> | ||
<td colspan="2">双原子分子</td> | ||
<td colspan="2">三原子分子</td> | ||
</tr> | ||
<tr> | ||
<td>刚性</td> | ||
<td>非刚性</td> | ||
<td>刚性</td> | ||
<td>非刚性</td> | ||
</tr> | ||
<tr> | ||
<td>分子自由度 $i$</td> | ||
<td>3</td> | ||
<td>5</td> | ||
<td>7</td> | ||
<td>6</td> | ||
<td>12</td> | ||
</tr> | ||
</table> | ||
|
||
### 麦克斯韦气体分子速率分布律 | ||
|
||
#### 最概然速率 \$v_p\$ | ||
|
||
$$ | ||
\left.\frac{\mathrm{d}f(v)}{\mathrm{d}v}\right|_{v=v_p}=0 | ||
$$ | ||
|
||
$$ | ||
v_p=\sqrt{\frac{2kT}{m}}=\sqrt{\frac{2RT}{M}} | ||
$$ | ||
|
||
其中 $M$ 为气体的摩尔质量。 | ||
|
||
#### 平均速率 \$\overline{v}\$ | ||
|
||
$$ | ||
\overline{v}=\int_0^{+\infty}vf(v)\ \mathrm{d}v | ||
$$ | ||
|
||
$$ | ||
\overline{v}=\sqrt{\frac{8kT}{\pi m}}=\sqrt{\frac{8RT}{\pi M}} | ||
$$ | ||
|
||
#### 方均根速率 \$v\_{rms}\$ | ||
|
||
$$ | ||
\overline{v^2}=\int_0^{+\infty}v^2f(v)\ \mathrm{d}v | ||
$$ | ||
|
||
$$ | ||
v_{rms}=\sqrt{\overline{v^2}}=\sqrt{\frac{3kT}{m}}=\sqrt{\frac{3RT}{M}} | ||
$$ | ||
|
||
### 分子的平均碰撞频率和平均自由程 | ||
|
||
$$ | ||
\overline{\lambda}=\frac{\overline{v}}{\overline{Z}} | ||
$$ | ||
|
||
$$ | ||
\overline{Z}=\sqrt{2}\pi d^2\overline{v}n | ||
$$ | ||
|
||
其中 $d$ 为分子直径,也称分子的有效直径。 | ||
|
||
$$ | ||
\overline{\lambda}=\frac{1}{\sqrt{2}\pi d^2 n}=\frac{kT}{\sqrt{2}\pi d^2p} | ||
$$ | ||
|
||
### 热力学第一定律 | ||
|
||
$$ | ||
Q=W+\Delta E | ||
$$ | ||
|
||
### 摩尔热容 | ||
|
||
#### 摩尔定容热容 | ||
|
||
$$ | ||
C_{V,\mathrm{m}}=\frac{\mathrm{d}Q_{V,\mathrm{m}}}{\mathrm{d}T} | ||
$$ | ||
|
||
理论值 $\frac{i}{2}R$ | ||
|
||
#### 摩尔定压热容 | ||
|
||
$$ | ||
C_{p,\mathrm{m}}=\frac{\mathrm{d}Q_{p,\mathrm{m}}}{\mathrm{d}T} | ||
$$ | ||
|
||
理论值 $\frac{i+2}{2}R$ | ||
|
||
#### 绝热系数(热容比) | ||
|
||
$$ | ||
\gamma=\frac{C_{p,\mathrm{m}}}{C_{V,\mathrm{m}}} | ||
$$ | ||
|
||
理论值 $\frac{i+2}{i}$ | ||
|
||
#### 固体热容 | ||
|
||
##### 晶体内能 | ||
|
||
物质的量为 $\nu$ 的理想晶体的内能为 | ||
|
||
$$ | ||
E=3\nu RT | ||
$$ | ||
|
||
##### 理想晶体摩尔热容 | ||
|
||
$$ | ||
C_{\mathrm{m}}=\frac{E_m}{T}=3R | ||
$$ | ||
|
||
##### 比热容 | ||
|
||
$$ | ||
c=\frac{C}{m'} | ||
$$ | ||
|
||
其中 $m'$ 是固体质量。 | ||
|
||
### 理想气体的绝热过程 | ||
|
||
$$ | ||
pV^{\gamma}=\text{常量}\\ | ||
V^{\gamma-1}T=\text{常量}\\ | ||
p^{\gamma-1}T^{-\gamma}=\text{常量} | ||
$$ | ||
|
||
注意三个常量并不相同。 | ||
|
||
### 循环过程 | ||
|
||
$$ | ||
\eta=\frac{W}{Q_1}=1-\frac{|Q_2|}{Q_1} | ||
$$ | ||
|
||
其中 $W$ 是对外做功,$Q_1$ 是吸收热量,$Q_2$ 是放出热量。 | ||
|
||
### 熵 | ||
|
||
$$ | ||
\Delta S=S_B-S_A\int_A^B\frac{\mathrm{d}Q}{T} | ||
$$ | ||
|
||
#### 玻耳兹曼关系式 | ||
|
||
$$ | ||
S=k\ln{W} | ||
$$ | ||
|
||
其中 $W$ 为热力学概率,是分子热运动的系统无序度的量度。 |