-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
更新 README.md 中的待办事项,添加数学公式渲染支持;添加新的 SVG 图标文件;删除不再使用的 GitHub 图标文件;新增优化…
…方法作业和概率论与数理统计的笔记内容。
- Loading branch information
1 parent
aa5640d
commit e514ca7
Showing
11 changed files
with
218 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,4 +5,5 @@ | |
- [ ] i18n 支持 | ||
- [ ] 评论支持 | ||
- [ ] 标签云 | ||
- [ ] 主题色 | ||
- [ ] tag 和 category 颜色 | ||
- [ ] 目录中也能渲染数学公式 |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file was deleted.
Oops, something went wrong.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
+++ | ||
weight = -3 | ||
image = '' | ||
categories = ['大学学习'] | ||
date = '2024-12-12T17:40:44+08:00' | ||
title = '概率论与数理统计的记忆知识点' | ||
description = '临近期末考试整理的一些需要特别记忆的考点' | ||
tags = ['概率论', '数理统计'] | ||
lastmod = '2024-12-12T18:12:44+08:00' | ||
+++ | ||
|
||
## 关于 | ||
|
||
尽管是纯粹的数学学科,但还是有很多公式是需要特别记忆的,整理的过程中也能发现一些规律,并不需要死记硬背。(顺便测试下博客的内嵌 PDF 功能) | ||
|
||
## 协方差与相关系数 | ||
|
||
$$ | ||
\text{Cov}(X,Y) = E(XY) - E(X)E(Y) | ||
$$ | ||
|
||
$$ | ||
D(X + Y) = D(X) + 2 \text{Cov}(X,Y) + D(Y) | ||
$$ | ||
|
||
$$ | ||
\rho = \frac{\text{Cov}(X,Y)}{\sqrt{D(X)} \sqrt{D(Y)}} | ||
$$ | ||
|
||
## 切比雪夫不等式 | ||
|
||
$$ | ||
P(|X - E(X)| \geq \varepsilon) \leq \frac{D(X)}{\varepsilon^2} | ||
$$ | ||
|
||
## 中心极限定理 | ||
|
||
### 独立同分布的中心极限定理(林德伯格-莱维中心极限定理) | ||
|
||
设 $X_1,X_2,\dots,X_n$ 独立同分布,且具有有限的数学期望和方差 $E(X_i)=\mu,D(X_i)=\sigma^2$,则 | ||
|
||
$$ | ||
\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^n X_i - n \mu}{\sqrt{n} \sigma} \leq x \right) = \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx | ||
$$ | ||
|
||
### 棣莫弗-拉普拉斯定理 | ||
|
||
在 $n$ 重伯努利试验中,成功概率为 $p$,成功次数为 $Y_n$,则 | ||
|
||
$$ | ||
\lim_{n \to \infty} P\left( \frac{Y_n - np}{\sqrt{npq}} \leq x \right) = \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx | ||
$$ | ||
|
||
## 数理统计中的三大分布 | ||
|
||
### $\chi^2$ 分布 | ||
|
||
设 $X_1,X_2,\dots,X_n$ 为 $n$ 个 $(n\geq1)$ 相互独立的随机变量,它们都服从标准正态分布 $N(0,1)$。 | ||
|
||
$$ | ||
Y=\sum_{i=1}^n X_i^2 | ||
$$ | ||
|
||
则随机变量 $Y$ 服从自由度为 $n$ 的 $\chi^2$ 分布,记作 $Y\sim\chi^2(n)$。 | ||
|
||
### $t$ 分布 | ||
|
||
设随机变量 $X,Y$ 相互独立,且 $X\sim N(0,1),Y\sim\chi^2(n)$。 | ||
|
||
$$ | ||
T=\frac{X}{\sqrt{\frac{Y}{n}}} | ||
$$ | ||
|
||
则随机变量 $T$ 服从自由度为 $n$ 的 $t$ 分布,记作 $T\sim t(n)$。 | ||
|
||
### $F$ 分布 | ||
|
||
设随机变量 $X,Y$ 相互独立,且 $X\sim\chi^2(n_1),Y\sim\chi^2(n_2)$。 | ||
|
||
$$ | ||
F=\frac{\frac{X}{n_1}}{\frac{Y}{n_2}} | ||
$$ | ||
|
||
则随机变量 $F$ 服从第一自由度为 $n_1$,第二自由度为 $n_2$的 $F$ 分布,记作 $F\sim F(n_1,n_2)$。 | ||
|
||
## 抽样分布 | ||
|
||
$$ | ||
\overline{X}= \frac{1}{n} \sum_{i=1}^n X_i | ||
$$ | ||
|
||
$$ | ||
S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2=\frac{1}{n-1}\left(\sum_{i=1}^n X_i^2 - n\overline{X}^2\right) | ||
$$ | ||
|
||
设 $X_1, X_2, \dots, X_n$ 是来自总体 $N(\mu, \sigma^2)$ 的一个样本,则样本均值 | ||
|
||
$$ | ||
\overline{X} \sim N\left( \mu, \frac{\sigma^2}{n} \right) | ||
$$ | ||
|
||
样本方差 $S^2$ 与样本均值 $\overline{X}$ 相互独立,且 | ||
|
||
$$ | ||
\frac{n-1}{\sigma^2} S^2 \sim \chi^2(n-1) | ||
$$ | ||
|
||
$$ | ||
\frac{(\overline{X} - \mu)\sqrt{n}}{S} \sim t(n-1) | ||
$$ | ||
|
||
## 评定估计量的标准 | ||
|
||
### 无偏性 | ||
|
||
$$ | ||
E[\hat{\theta}(X_1,X_2,\dots,X_n)] = \theta | ||
$$ | ||
|
||
则称 $\hat{\theta}$ 为 $\theta$ 的无偏估计量。 | ||
|
||
### 有效性 | ||
|
||
$$ | ||
D(\hat{\theta}_1) \leq D(\hat{\theta}_2) | ||
$$ | ||
|
||
则称 $\hat{\theta}_1$ 较 $\hat{\theta}_2$ 有效。 | ||
|
||
### 相合性 | ||
|
||
$\hat{\theta}$ 依概率收敛于 $\theta$,即对任意 $\varepsilon > 0$,有 | ||
|
||
$$ | ||
\lim_{n \to \infty} P\left( |\hat{\theta} - \theta| \geq \varepsilon \right) = 0 | ||
$$ | ||
|
||
则称 $\hat{\theta}$ 为 $\theta$ 的相合估计量。 | ||
|
||
## 区间估计 | ||
|
||
设 $x_1, x_2, \dots, x_n$ 是来自总体 $N(\mu, \sigma^2)$ 的一个样本,$\overline{x}, s^2$ 分别为样本均值和样本方差。 | ||
|
||
### $\sigma^2$ 已知 | ||
|
||
$\mu$ 的一个置信区间为 | ||
|
||
$$ | ||
\left( \overline{x} - u_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{x} + u_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right) | ||
$$ | ||
|
||
### $\sigma^2$ 未知 | ||
|
||
$\mu$ 的一个置信区间为 | ||
|
||
$$ | ||
\left( \overline{x} - t_{\frac{\alpha}{2}}(n-1) \frac{s}{\sqrt{n}}, \overline{x} + t_{\frac{\alpha}{2}}(n-1) \frac{s}{\sqrt{n}} \right) | ||
$$ | ||
|
||
### $\sigma^2$ 的置信区间 | ||
|
||
$$ | ||
\left( \frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2}}(n-1)} \right) | ||
$$ | ||
|
||
## 常用分布 | ||
|
||
| **分布** | **分布列或概率密度** | **数学期望** | **方差** | | ||
| -------------------------------- | ----------------------------------------------------------------------------------------------------------------- | ------------------- | --------------------- | | ||
| $0-1$分布 <br> $B(1, p)$ | $P(X = k) = p^k q^{1-k}$<br>$k = 0, 1$, $0 < p < 1$, $p + q = 1$ | $p$ | $pq$ | | ||
| 二项分布 <br> $B(n, p)$ | $P(X = k) = C_n^k p^k q^{n-k}$<br>$k = 0, 1, \dots, n$, $0 < p < 1$, $p + q = 1$ | $np$ | $npq$ | | ||
| 泊松分布 <br> $P(\lambda)$ | $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$<br>$k = 0, 1, 2, \dots$, $\lambda > 0$ | $\lambda$ | $\lambda$ | | ||
| 几何分布 <br> $G(p)$ | $P(X = k) = q^{k-1} p$, $k = 1, 2, \dots$<br>$0 < p < 1$, $p + q = 1$ | $\frac{1}{p}$ | $\frac{q}{p^2}$ | | ||
| 均匀分布 <br> $U[a, b]$ | $f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text{其他} \end{cases}$ | $\frac{a+b}{2}$ | $\frac{(b-a)^2}{12}$ | | ||
| 指数分布 <br> $E(\lambda)$ | $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$ | $\frac{1}{\lambda}$ | $\frac{1}{\lambda^2}$ | | ||
| 正态分布 <br> $N(\mu, \sigma^2)$ | $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$<br>$-\infty < \mu < +\infty$, $\sigma > 0$ | $\mu$ | $\sigma^2$ | | ||
|
||
## $\Gamma$ 函数 | ||
|
||
$$ | ||
\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt | ||
$$ | ||
|
||
若 $n$ 为正整数,则 | ||
|
||
$$ | ||
\Gamma(n) = (n-1)! | ||
$$ | ||
|
||
递推公式 | ||
|
||
$$ | ||
\Gamma(x+1) = x\Gamma(x) | ||
$$ | ||
|
||
特殊值 | ||
|
||
$$ | ||
\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} | ||
$$ | ||
|
||
## PDF 版本 | ||
|
||
{{< pdf "概率论速记.pdf" >}} |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
Submodule hugo-theme-stack
updated
5 files
+45 −0 | assets/scss/partials/layout/article.scss | |
+2 −0 | layouts/_default/single.html | |
+30 −0 | layouts/partials/back-to-top.html | |
+2 −5 | layouts/partials/sidebar/left.html | |
+8 −0 | layouts/shortcodes/pdf.html |