Skip to content
forked from unicamp-dl/mMARCO

A multilingual version of MS MARCO passage ranking dataset

License

Notifications You must be signed in to change notification settings

wenjun90/mMARCO

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

40 Commits
 
 
 
 
 
 
 
 

Repository files navigation

mMARCO

A multilingual version of MS MARCO passage ranking dataset

This repository presents a neural machine translation-based method for translating the MS MARCO passage ranking dataset. The code available here is the same used in our paper mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset.

Translated Datasets

As described in our work, we made available 8 translated versions of MS MARCO passage ranking dataset. The translated passages collection and the queries set (training and validation) are available at:

Released Model Checkpoints

Our available fine-tuned models are:

Model Description MRR@10*
ptT5-base-pt-msmarco a PTT5 model fine-tuned on Portuguese MS MARCO 0.188
ptT5-base-en-pt-msmarco a PTT5 model fine-tuned on English and Portuguese MS MARCO 0.343
mT5-base-en-pt-msmarco a mT5 model fine-tuned on both English and Portuguese MS MARCO 0.375
mT5-base-multi-msmarco a mT5 model fine-tuned on mMARCO 0.366
mMiniLM-pt-msmarco a mMiniLM model fine-tuned on Portuguese MS MARCO -
mMiniLM-en-pt-msmarco a mMiniLM model fine-tuned on both English and Portuguese MS MARCO 0.375
mMiniLM-multi-msmarco a mMiniLM model fine-tuned on mMARCO 0.363

* MRR@10 on English MS MARCO

Dataset

We translate MS MARCO passage ranking dataset, a large-scale IR dataset comprising more than half million anonymized questions that were sampled from Bing's search query logs.

Translation Model

To translate the MS MARCO dataset, we use MarianNMT an open-source neural machine translation framework originally written in C++ for fast training and translation. The Language Technology Research Group at the University of Helsinki made available more than a thousand language pairs for translation, supported by HuggingFace framework.

How To Translate

In order to allow other users to translate the MS MARCO passage ranking dataset to other languages (or a dataset of your own will), we provide the translate.py script. This script expects a .tsv file, in which each line follows a document_id \t document_text format.

python translate.py --model_name_or_path Helsinki-NLP/opus-mt-{src}-{tgt} --target_language tgt_code--input_file collection.tsv --output_dir translated_data/

After translating, it is necessary to reassemble the file, as the documents were split into sentences.

python create_translated_collection.py --input_file translated_data/translated_file --output_file translated_{tgt}_collection

Translating the entire passages collection of MS MARCO took about 80 hours using a Tesla V100.

BM25 Baseline for Portuguese

The steps reported here are the same used for any language from mMARCO.

Data Prep

Using pygaggle scripts, we convert the mMARCO Portuguese collection into json files:

python pygaggle/tools/scripts/msmarco/convert_collection_to_jsonl.py \
  --collection-path path/to/portuguese_collection.tsv \
  --output-folder collections/portuguese-msmarco-passage/collection_jsonl

Indexing using Pyserini

Now we can index the Portuguese collection using Pyserini:

python -m pyserini.index -collection JsonCollection \
  -generator DefaultLuceneDocumentGenerator \
  -threads 1 -input collections/portuguese-msmarco-passage/collection_jsonl/ \
  -index indexes/portuguese-lucene-index-msmarco \
  -storePositions -storeDocvectors -storeRaw -language portuguese

As the original English set, the built index should have 8,841,823 documents.

Retrieval

Using a pygaggle script, we select only the queries that are in the qrels file:

python pygaggle/tools/scripts/msmarco/filter_queries.py \
 --qrels path/to/qrels.dev.small.tsv \
 --queries path/to/portuguese_queries.dev.tsv \
 --output collections/portuguese-msmarco-passage/portuguese_queries.dev.small.tsv

This script results a file with 6980 queries. Now we can retrieve from our index:

python -m pyserini.search --topics collections/portuguese-msmarco-passage/portuguese_queries.dev.small.tsv \
--index indexes/portuguese-lucene-index-msmarco --language portuguese \
--output runs/run.portuguese-msmarco-passage.dev.small.tsv  \
--bm25 --output-format msmarco --hits 1000 --k1 0.82 --b 0.68

Evaluation

Using the official MS MARCO evaluation script:

python pygaggle/tools/scripts/msmarco/msmarco_passage_eval.py \
  path/to/qrels.dev.small.tsv runs/run.portuguese-msmarco-passage.dev.small.tsv

The output should be like:

#####################
MRR @10: 0.14122873743575773
QueriesRanked: 6980
#####################

Re-ranking with mT5

Finally, we can re-rank our BM25 initial run using mT5-base-multi-msmarco (or each one of the previous listed models):

python reranker.py --model_name_or_path=unicamp-dl/ptt5-base-en-pt-msmarco-10k \
--initial_run runs/run.portuguese-msmarco-passage.dev.small.tsv  \
--corpus path/to/portuguese_collection.tsv --queries portuguese_queries.dev.small.tsv \
--output_run runs/run.mt5-reranked-portuguese-msmarco-passage.dev.small.tsv

Using the official MS MARCO evaluation script to evaluate the re-ranked results:

python pygaggle/tools/scripts/msmarco/msmarco_passage_eval.py \
  path/to/qrels.dev.small.tsv runs/run.mt5-reranked-portuguese-msmarco-passage.dev.small.tsv

The output should be like:

#####################
MRR @10: 0.2832968344931086
QueriesRanked: 6980
#####################

How to Cite

If you extend or use this work, please cite the paper where it was introduced:

@misc{bonifacio2021mmarco,
      title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, 
      author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
      year={2021},
      eprint={2108.13897},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

About

A multilingual version of MS MARCO passage ranking dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%